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Motivation

I H: a complex (separable) Hilbert space

I L(H): the algebra of all bounded linear operators on H.

Motivation

I In 1925, Takagi observed the relevance of antilinear eigenvalue
problem:

Tx = λx̄ , (x 6= 0)

where T is an n × n complex symmetric matrix and x̄ denotes
complex conjugation of a vector x in Cn.

Ta T. Takagi, On an algebraic problem related to an analytic
theorem of Caratheodory and Fejer and on an allied theorem
of Landau, Japan J. Math. 1(1925), 83-93.
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Study

GP1 S. R. Garcia and M. Putinar, Complex symmetric operators
and applications, Trans. Amer. Math. Soc. 358 (2006),
1285-1315.

GP2 , Complex symmetric operators and applications
II, Trans. Amer. Math. Soc. 359(2007), 3913-3931.

I M. Putinar, University of California at Santa Barbara, USA
I S. R. Garcia, Pomona college, USA
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Conjugation

1.1 Conjugation
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Conjugation

Definition 1.1.1
C : H → H is a conjugation operator on H
if the following conditions hold:
(i) C is antilinear; C (ax + by) = āCx + b̄Cy for all a, b ∈ C and
x , y ∈ H.
(ii) C is isometric; 〈Cx ,Cy〉 = 〈y , x〉 for all x , y ∈ H
(iii) C is involutive; C 2 = I .

I By the polarization identity, the second condition (ii) is
equivalent to ‖Cx‖ = ‖x‖ for all x ∈ H.

I Note that (CTC )k = CT kC and (CTC )∗ = CT ∗C for every
positive integer k , and ‖C‖ = 1.
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Properties of Conjugations

Lemma 1.1.2
For a conjugation C on H, there is an orthonormal basis {en}∞n=0

for H such that Cen = en for all n (Such a basis is C -real).

Proof.
Consider the set K = (I + C )H. Note that each vector in K is
fixed by C . Since

〈x , y〉 = 〈Cy ,Cx〉 = 〈y , x〉 = 〈x , y〉, x , y ∈ K,

we conclude that K is a real Hilbert space. Let {en} be an
orthonormal basis for K. Since H = K+ iK, it follows that {en} is
an orthonormal basis for H.

[Ref.] S. R. Garcia, 2011-RENNES01, PPT.
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Properties of Conjugations

Lemma 1.1.3
Any conjugation operator is unitarily equivalent to complex
conjugation on an `2 space of the appropriate dimension.

Proof.
If {en} is a C -real basis for H, then

C (
∑
n

αnen) =
∑
n

αnen.

The coordinate map U : H → `2 defined by Uf = {〈f , en〉} is
unitary and satisfies JU = UC where J : `2 → `2 is the canonical
conjugation J(z1, z2, · · · ) = (z1, z2, · · · ).
[Ref.] S. R. Garcia, 2011-RENNES01, PPT.
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Examples of conjugation

I The most trivial example of a conjugation operator is simply
complex conjugation on C.

I (Canonical conjugation)
C (x1, x2, x3, · · · , xn) = (x1, x2, x3, · · · , xn) on Cn.

I (Toeplitz conjugation)
C (x1, x2, x3, · · · , xn) = (xn, xn−1, xn−2, · · · , x1) on Cn.

Let’s define an operator C as follows:

I (pointwise conjugation) [Cf ](x) = f (x) on a Lebesgue space
L2(X , µ).

I [Cf ](x) = f (1− x) on L2([0, 1]).

I [Cf ](x) = f (−x) on L2(Rn).

I [Cf ](z) = zf (z)u(z) ∈ Ku for all f ∈ Ku where u is an inner
function and Ku = H2 � uH2 is a Model space.
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Conjugation on C2.

Example 1.1.4

Let the operator C be given by

C

(
z1

z2

)
=

(
1√

1+a2
a√

1+a2

a√
1+a2

− 1√
1+a2

)(
z1

z2

)
.

Then C is the conjugation on C2.

Proof.
We may assume that a is real. (1) C is involutive;

C 2

(
z1

z2

)
= C

(
1√

1+a2
a√

1+a2

a√
1+a2

− 1√
1+a2

)(
z1

z2

)
=

1

1 + a2

(
1 + a2 0

0 1 + a2

)(
z1

z2

)
=

(
z1

z2

)
.
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Conjugation on C2.

Proof.
(2) C is isometric;

〈
C

(
z1

z2

)
,C

(
z1

z2

)〉
=

〈( 1√
1+a2

a√
1+a2

a√
1+a2

− 1√
1+a2

)(
z1

z2

)
,

(
1√

1+a2
a√

1+a2

a√
1+a2

− 1√
1+a2

)(
z1

z2

)〉
=

1

1 + a2

(
1 + a2 0

0 1 + a2

)〈(z1

z2

)
,

(
z1

z2

)〉
=

〈(z1

z2

)
,

(
z1

z2

)〉
.

Since C is clearly an antilinear, it follows that C is the conjugation
on C2.
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Hardy space

I L2 := L2(∂D) is the usual Lebesque space on the unit circle
∂D.

I L∞ is the Banach space consisting of all essentially bounded
functions on ∂D.

I {zn : n = 0,±1,±2,±3, · · · } is an orthonormal basis for L2.

I The Hilbert Hardy space, denoted by H2, consists of all
analytic functions f on D with power series representation
f (z) =

∑∞
n=0 anz

n and
∑∞

n=0 |an|2 <∞, or equivalently, with

sup
0<r<1

( 1

2π

∫ 2π

0
|f (re iθ)|2dθ

)
<∞.

I H2 = span{zn : n = 0, 1, 2, 3, · · · }.
I H∞ is the space of bounded analytic functions on D.
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Conjugation on a Model space Ku

I A function u ∈ H2 is called inner if |u| = 1 a.e. on ∂D.

Example 1.1.5

Let u be nonconstant inner function and let Ku = H2 � uH2 be
Model space. If the operator C is defined by

[Cf ](z) = zf (z)u(z) ∈ Ku for all f ∈ Ku,

then C is a conjugation on Ku.

Proof.
Let f be an arbitrary function in Ku and consider the function fzu
in L2(T). Since 〈fzu, zh〉 = 〈uh, f 〉 = 0 and 〈fzu, uh〉 = 〈zh, f 〉 = 0
for each f ∈ Ku and h ∈ H2, the antilinear C maps Ku to itself.
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Example

Proof.
On the other hand, since |u| = 1 a.e. on T, it follows that

〈Cf ,Cg〉 = 〈fzu, gzu〉 = 〈g , f 〉

for each f , g ∈ Ku. Thus C is isometric. Finally, since

C 2f = C (fzu) = fzuzu = f |z |2|u|2 = f

for each f ∈ Ku, we have C 2 = I . Thus C is involutive. Hence C
is a conjugation on Ku.



Complex symmetric operators and their applications

Lecture 1. Preliminaries

Conjugation on L2([−1, 1])

Consider a bounded, positive continuous weight ρ on the interval
[-1,1], symmetric with respect to the midpoint of the interval, i.e.,
ρ(t) = ρ(−t) for t ∈ [0, 1]. Let Pn the associated orthogonal
polynomials, normalized by the conditions∫ 1

−1
Pn(t)2ρ(t)dt = 1, lim

x→∞
Pn(x)/xn = 1.

Due to their uniqueness, these polynomials have real coefficients
and satisfy

Pn(−t) = (−1)nPn(t)

for all t. Thus, en(t) = inPn(t) for all n ≥ 0 is a C -real basis for
L2([−1, 1], ρdt) with respect to the symmetry Cf (t) := f (−t).
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CSO

1.2 Complex symmetric operators
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Complex symmetric operators

Definition 1.2.1

I An operator T ∈ L(H) is said to be complex symmetric if
there exists a conjugation C on H such that

T = CT ∗C (1)

where T ∗ is the adjoint of T .

I In this case, we say that T is a complex symmetric operator
(CSO) with a conjugation C .
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CSOs on finite dimensional spaces

Example 1.2.2

I All 2× 2 complex matrix on C2.

I For distinct complex numbers a and b, let

T =

1 a 0
0 0 b
0 0 1

 : C3 → C3.

If | a |=| b |, then T is complex symmetric with respect to
conjugation C (x1, x2, x3) = (x3, x2, x1) (see [GP1]).
If | a |6=| b |, then T is not complex symmetric.

I Finite Toeplitz matrix (e.g., finite Jordan blocks)

I Finite Hankel matrix (any size)

I Complex symmetric matrices
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CSMs occur in the study of

(Sorry, we will not discuss the following here)

I thermoelastic waves

I electric power modeling

I quantum reaction dynamics

I multicomponent transport

I vertical cavity surface emitting lasers(VCSELs)

I numerical simulation of high-voltage insulators

[Ref.] S. R. Garcia, 2011-RENNES01, PPT.
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Finite dimensional case

Example 1.2.3

I A 3× 3 Toeplitz matrix T =

a0 a−1 a−2

a1 a0 a−1

a2 a1 a0

 satisfies

T = CT ∗C where C (z1, z2, z3) = (z3, z2, z1) for all
z1, z2, z3 ∈ C3.

I A 3× 3 Hankel matrix T =

a0 a1 a2

a1 a2 a3

a2 a3 a4

 satisfies

T = CT ∗C where C (z1, z2, z3) = (z1, z2, z3) for all
z1, z2, z3 ∈ C3.
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Finite Toeplitz matrix is CSO
For a 3× 3 Toeplitz matrix, we show that CT ∗C = T ;

CT ∗C (z1, z2, z3) = C

 a0 a1 a2

a−1 a0 a1

a−2 a−1 a0

z3

z2

z1


= C

 a0z3 + a1z2 + a2z1

a−1z3 + a0z2 + a1z1

a−2z3 + a−1z2 + a0z1


=

a−2z3 + a−1z2 + a0z1

a−1z3 + a0z2 + a1z1

a0z3 + a1z2 + a2z1


=

a0 a−1 a−2

a1 a0 a−1

a2 a1 a0

z1

z2

z3


= T (z1, z2, z3).
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CSOs on infinite dimensional spaces

Example 1.2.4

I Normal operators (i.e., T ∗T = TT ∗)

I Aluthge transforms of CSOs

I Algebraic operator of order 2 (i.e., T 2 + aT + b = 0)

I Truncated Toeplitz operators (i.e.,
Au
ϕf = Pu(ϕf ),Pu : H2 → Ku := H2 	 uH2)

I The Volterra integration operator Tf (x) =
∫ x

0 f (y)dy on

L2([0, 1]) satisfies T = CT ∗C where Cf (x) = f (1− x) on
L2([0, 1]).
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Infinite dimensional case

Example 1.2.5

I Foguel-Hankel operators, i.e., T =

(
S∗ H
0 S

)
where S is the

unilateral shift on `2 and H is a Hankel matrix, is CSO w.r.t.(
0 J
J 0

)
.

I S∗ ⊕ S where S is the unilateral shift on `2.

I Binormal operators, that is, 2× 2 block operators whose
entries are commuting normal operators

I Rank one perturbation of normal operators
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Normal is CSO

Theorem 1.2.6
Every normal operator is complex symmetric.

Proof.
We may assume that

Tf = ϕf (∗)

on L2(X , µ) where ϕ ∈ L∞(X , µ). Let Cf = f . Then C is a
conjugation on L2(X , µ). Since

T ∗f = ϕf ,

we verify that CT ∗Cf = CT ∗f = Cϕf = ϕf = Tf . Hence
T = CT ∗C and so T is complex symmetric.
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Normal is CSO

I (∗) The building blocks, that is orthogonal summands, of any
normal operator are the multiplication operators Mz on a
Lebesgue space L2(µ) of a planar, positive Borel measure µ
with compact support.

I In general, subnormal operators, i.e., it has normal extension,
are not complex symmetric.
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Rank one operator

I u ⊗ v denotes the rank one operator given by

(u ⊗ v)f := 〈f , v〉u.

Lemma 1.2.7
Let T = u ⊗ v . Then T is complex symmetric with a conjugation
C if and only if T is a constant multiple of u ⊗ Cu.

Proof.
Since C 〈f , v〉u = 〈f , v〉Cu = 〈v , f 〉Cu = 〈Cf ,Cv〉Cu, it follows
that

C (u ⊗ v)f = (Cu ⊗ Cv)Cf

for all f , u, v ∈ H. Note that (u ⊗ v)∗ = (v ⊗ u). From this,
(u ⊗ v)∗ = C (u ⊗ v)C if and only if (v ⊗ u) = (Cu ⊗ Cv) if and
only if v = λCu for some λ ∈ C. Hence the proof is completed.
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Compact complex symmetric operators

Definition 1.2.8
An operator T ∈ L(H) is said to be compact if it can be written in
the form T =

∑∞
n=1 λn〈fn, ·〉gn where f1, f2, · · · and g1, g2, · · · are

orthonormal sets (not necessarily complete), and λ1, λ2, · · · is a
sequence of positive numbers with limit zero.

Theorem 1.2.9
Every compact complex symmetric operator T is of the form

T =
∞∑
n=1

an(en ⊗ Cen)

where the en are certain orthonormal eigenvectors of |T | =
√
T ∗T

and {an} are the nonzero eigenvalues of T , repeated according to
multiplicity.
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Truncated Toeplitz operators (TTO)

I For any ϕ ∈ L∞, the Toeplitz operator Tϕ : H2 → H2 is
defined by the formula

Tϕf = P(ϕf ), f ∈ H2

where P denotes the orthogonal projection of L2 onto H2.

I For an inner function u and ϕ ∈ L2, the truncated Toeplitz
operator Au

ϕ : Ku → Ku (possibly unbounded) is the
compressed operator of Tϕ to the space Ku defined by

Au
ϕf := PuTϕPuf = Pu(ϕf ), f ∈ Ku ∩ L∞(∂D)

where Pu denotes the orthogonal projection of L2 onto Ku.
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Truncated Toeplitz operators (TTO)

Proposition 1.2.10

If u is a nonconstant inner function, then Au
ϕ is complex symmetric

with the conjugation C .

Proof.
For f , g ∈ Ku we have

〈CAu
ϕf , g〉 = 〈Cg ,Au

ϕf 〉 = 〈Cg ,PuTϕPuf 〉
= 〈PuCg ,Tϕf 〉 = 〈Cg ,P(ϕf )〉
= 〈PCg , ϕf 〉 = 〈Cg , ϕf 〉
= 〈gzu, ϕf 〉 = 〈fzu, ϕg〉
= 〈Cf , ϕg〉 = 〈PPuCf , ϕg〉
= 〈PuCf ,Tϕg〉 = 〈Cf ,PuTϕPug〉
= 〈Cf ,Au

ϕg〉 = 〈Au∗
ϕ Cf , g〉.

Hence Au
ϕ is complex symmetric with the conjugation C .
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Volterra integration operator

Proposition 1.2.11

Let the Volterra integration operator V : L2[0, 1]→ L2[0, 1] be
defined by

[Vf ](x) =

∫ x

0
f (t)dt.

Then V is complex symmetric with the conjugation C given by
[Cf ](x) = f (1− x) on L2[0, 1].

Proof.
Note that [V ∗f ](x) =

∫ 1
x f (t)dt. Then

CV ∗f (x) = C

∫ 1

x
f (t)dt = CF (x) where F (x) :=

∫ 1

x
f (t)dt

= F (1− x) =

∫ 1

1−x
f (t)dt (2)
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Volterra integration operator

and

VCf (x) = V f (1− x) where g(x) := f (1− x)

= Vg(x) =

∫ x

0
g(y)dy =

∫ x

0
f (1− y)dy

=

∫ 1−x

1
f (t)(−dt) =

∫ 1

1−x
f (t)dt. (3)

Hence CV ∗ = VC holds.
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Basic properties of CSO

In 2006, [S.R. Garcia and M. Putinar, TAMS]

Let T ∈ L(H) be a complex symmetric operator with a
conjugation C .

I T is left invertible if and only if T is right invertible.

I If T−1 exists, then T−1 is also complex symmetric.

I kerT is trivial if and only if ranT is dense in H.

I p(T ) is complex symmetric for any polynomial p(z).

I For each λ and n ≥ 0, the map C establishes an antiliner
isometric isomorphisim between ker(T − λI )n and
ker(T ∗ − λI )n.

I If T1 is complex symmetric with a conjugation C1, then
UT1U

∗ is complex symmetric with the conjugation UC1U
∗

where U is unitary.



Complex symmetric operators and their applications

Lecture 1. Preliminaries

Example

Example 1.2.12

The unilateral shift S on H2 is not complex symmetric.
Indeed, S has no eigenvalues while the backward shift S∗ have
many eigenvalues.
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Refined polar decomposition

Theorem 1.2.13 (Godic-Lucenko [GL])

If U is a unitary operator on H, then there exist conjugations C
and J on H such that U = CJ.

Lemma 1.2.14
If both C and J are conjugations on H, then U = CJ is a unitary
operator. Moreover, U is complex symmetric with both
conjugations C and J.

Example 1.2.15

If U denotes the unitary operator [Uf ](e iθ) = e iθf (e iθ) on
L2(∂D, µ), then U = CJ where

[Cf ](e iθ) = e
i
2
θf (e iθ) and [Jf ](e iθ) = e−

i
2
θf (e iθ)

for all f ∈ L2(∂D, µ).



Complex symmetric operators and their applications

Lecture 1. Preliminaries

Refined polar decomposition

I Recall that for T ∈ L(H), the polar decomposition of T
expresses T = U|T | uniquely where |T | =

√
T ∗T and U is a

partial isometry with kerT = kerU = ker |T | and that map
the initial space (ker |T |)⊥ on the final space ranT .

Theorem 1.2.16
If T = U|T | is the polar decomposition of a complex symmetric
operator T , then T = CJ|T | where J is a partial conjugation,
supported on ran|T |, which commutes with |T | =

√
T ∗T . In

particular, the partial isometry U is complex symmetric with the
conjugation C and U = CJ.
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Refined polar decomposition

Proof.
Let T = U|T | be the polar decomposition of a complex symmetric
operator T . Since U∗U is the orthogonal projection onto ran|T |, it
follows that

T = CT ∗C = C |T |U∗C = C (U∗U)|T |U∗C = (CU∗C )(CU|T |U∗C )
(4)

Setting W = CU∗C , it follows that W ∗ = CUC and hence
WW ∗W = W since U∗UU∗ = U∗. Thus W is a partial isometry
and A = CU|T |U∗C = CU|T |(CU)∗ is clearly positive.
If we can show that kerA = kerW = kerT , then the uniqueness of
the polar decomposition of T gives that W = U and A = |T |.
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Refined polar decomposition

Proof.
Since U and U∗ have ran|T | as their initial and final spaces,
respectively, it follows that

kerW = kerA = kerU∗C .

We claim that kerT = kerU∗C . By (4), kerU∗C ⊆ kerT .
Conversely, if Tf = 0, then (4) implies that |T |U∗Cf = 0. Since
ran(U∗) = ran|T |, we have U∗Cf = 0 and so kerT = kerU∗C .
Hence W = U and A = |T |.
Since U = CU∗C , it follows that U is complex symmetric with C .
Writing J = CU = U∗C , we have J2 = (U∗C )(CU) = U∗U and it
is the orthogonal projection onto ran|T |. Since CU|T |U∗C = |T |,
it follows that J|T |J = |T | and so J|T | = |T |J.
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Refined polar decomposition

Proof.
Since J = CU, we have ker J = kerU = ker |T | = (ran|T |)⊥.
Moreover, since J = U∗C , it follows that
ran(J) = ran(U∗) = ran|T |. Finally, J is clearly isometric on
ran|T | since CU is isometric there. Thus J is a partial conjugation
supported on ran|T | which commutes with |T |. The proof is
completed.
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Refined polar decomposition

Corollary 1.2.17

Let T be complex symmetric with the conjugation C . Then the
following properties hold.
(i) T = W |T | where W is a unitary complex symmetric operator
with the conjugation C .
(ii) T ∗T and TT ∗ are unitarily equivalent.
(iii) T is invertible if and only if |T | is invertilble.
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Refined polar decomposition

Example 1.2.18

Let S be the unilateral shift given by Sen = en+1 and let C be the
canonical conjugation on `2(N). Then SC = CS and S∗C = CS∗.
Hence S∗ ⊕ S is complex symmetric with respect to the

conjugation

(
0 C
C 0

)
. A direct computation shows that

(
S∗ 0
0 S

)
︸ ︷︷ ︸

T

=

(
0 C
C 0

)
︸ ︷︷ ︸

C

(
0 CS

CS∗ 0

)
︸ ︷︷ ︸

J

(
P 0
0 I

)
︸ ︷︷ ︸
|T |

where P is the orthogonal projection

P(a0, a1, a2, · · · ) = (0, a1, a2, · · · ).
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Invariant subspaces of CSO

Proposition 1.2.19

Let T ∈ L(H) be complex symmetric with a conjugation C .

I M is C -invariant if and only if M⊥ is C -invariant

I If M is a subspace of H and it is invariant under C and T ,
then M reduces T .

I M reduces T if and only if CM reduces T .

I If M is a C -invariant subspace of H and P is the orthogonal
projection from H onto M, then the compression A = PTP
of T to M satisfies CA = A∗C .
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Invariant subspaces of CSO

Example 1.2.20

I There are no proper nontrivial subspaces of Cn which are
simultaneously invariant for both the Jordan block J := Jn(λ)
and w.r.t. the conjugation C .

I If M is a nontrivial subspace of Cn which is J-invariant, then
it must contain the vector (1, 0, · · · , 0). But,
C (1, 0, 0, · · · ) = (0, · · · , 0, 1). So if M is also C -invariant,
then M must be all of Cn.
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Invariant subspaces of CSO

Example 1.2.21

Let X[0,a) be the characteristic function of the interval [0, a) and
a ∈ [0, 1]. Then the subspace X[0,a)L

2([0, 1]) is the only invariant
subspaces for the Volterra integration operator. There are no
proper nontrivial subspaces of V -invariant subspaces of L2[0, 1]
which are also C -invariant.
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Aluthge transforms of CSO

1.3 Aluthge transforms of complex
symmetric operators

Ga S. R. Garcia, Aluthge transforms of complex symmetric
operators and applications, Int. Eq. Op. Th. 60(2008),
357-367.

WG X. Wang and Z. Gao, A note on Aluthge transforms of
complex symmetric operators and applications, Int. Eq. Op.
Th. 65(2009), 573-580.
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Aluthge transforms

I A. Aluthge (1990) introduced the Aluthge transform T̃ which
given by

T̃ = |T |
1
2U|T |

1
2

for an operator T = U|T | ∈ L(H).

I A. Aluthge showed that if T is p-hyponormal with 0 < p < 1
2 ,

then (̃T̃ ) is hyponormal.

I I. B. Jung, E. Ko, and C. Pearcy proved that if T is a
quasiaffinity, then Lat(T ) is nontrivial if and only if Lat(T̃ ) is
nontrivial.
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Lemma 1.3.1
If T ∈ L(H) is complex symmetric with the conjugation C , then
T = CJ|T | where J is a partial conjugation, supported on (ran|T |)
which commutes with |T |.

Remark
We may write T = CJ|T | where J is a conjugation on all of H.

Theorem 1.3.2
The Aluthge transform of a complex symmetric operator is complex
symmetric. In other words, if T = CT ∗C for some conjugation C ,
then there exists a conjugation J such that T̃ = J(T̃ )∗J.
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Proof.
By Lemma 1.3.1 and Remark, we may write

T = CJ|T |

where J is a conjugation on all of H which commutes with |T |.
Since T̃ = |T |

1
2CJ|T |

1
2 and (CJ)∗ = JC , we have

J(T̃ )∗J = J|T |
1
2 JC |T |

1
2 J = |T |

1
2CJ|T |

1
2 = T̃ . (5)
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Theorem 1.3.3
If T is complex symmetric, then (T̃ )∗ ∼= (T̃ ∗) where ∼= denotes
unitary equivalence.

Proof.
Since T is complex symmetric, there exist conjugations C and J
such that T = CJ|T | and J|T | = |T |J. It suffices to establish that

T̃ = J(T̃ )∗J and T̃ = C (T̃ ∗)C .

Since (5) holds, we only show T̃ = C (T̃ ∗)C .
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Proof.
Since T is complex symmetric, it follows that C (TT ∗)C = T ∗T
and so C (TT ∗)pC = (T ∗T )p for all p ≥ 0. In particular, we have

T ∗ = CTC = C (CJ|T |)C = J|T |C = JC |T ∗|.

Hence

C (T̃ ∗)C = C [|T ∗|
1
2 JC |T ∗|

1
2 ]C

= |T |
1
2CJ|T |

1
2 = T̃ .
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Example 1.3.4

If S is the unilateral shift on H, then (S̃)∗ and (S̃∗) are not
unitarily equivalent. Indeed, since S = SI and S∗ = S∗(SS∗) are
the polar decompositions of S and S∗, respectively, we have
(S̃)∗ = (ISI )∗ = S∗ and

(S̃∗) = (SS∗)S∗(SS∗) = (SS∗)(S∗S)S∗ = S(S∗)2.

Hence (S̃)∗ and (S̃∗) are not unitarily equivalent.
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Lemma 1.3.5
If T is complex symmetric with the conjugation C , then the
following are equivalent;
(i) T is quasinormal, i.e., [T ,T ∗T ] = 0,
(ii) C and |T | commute,
(iii) T is normal.

Proof.
(i)⇒(ii): If T is quasinormal, then U|T | = |T |U. Since U = CJ
and J|T | = |T |J, it follows that C |T |J = CJ|T | = |T |CJ. Thus
C |T | = |T |C .
(ii)⇒(iii): If C and |T | commute, then

TT ∗ = (CJ|T |)(|T |JC ) = C |T |2C = |T |2 = T ∗T .

Hence T is normal.
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Theorem 1.3.6
If T is complex symmetric, then T̃ = T if and only if T is normal.

Proof.
Since T̃ = T if and only if T is quasinormal by [JKP], it follows
from Lemma 1.3.5 that T̃ = T if and only if T is normal.

JKP I. Jung, E. Ko and C. Pearcy, Aluthge transform of operators,
Int. Eq. Op. Th., 37(2000), 437-448.
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Theorem 1.3.7
Let T ∈ L(H). Then T̃ = 0 if and only if T 2 = 0.

Proof.
Let T = U|T | be the polar decomposition of T . (⇒) If T̃ = 0,
then

T 2 = U|T |U|T | = U|T |
1
2 T̃ |T |

1
2 = 0.

(⇐) If T 2 = 0, then U|T |U|T | = 0. Since U∗U is the orthogonal

projection onto ran(|T |), |T |
1
2 T̃ |T |

1
2 = 0. Moreover, since T̃

vanishes on ker |T |, it suffices to show that T̃ vanishes on ran|T |.
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Proof.
Assume that y ∈ ran|T | and z = T̃ y 6= 0. Then y = |T |

1
2 x for

some x and so

0 = |T |
1
2 T̃ |T |

1
2 x = |T |

1
2 T̃ y = |T |

1
2 z 6= 0

since z is a nonzero vector in ran|T |. This contradiction shows
that T̃ vanishes on ran|T | and hence on ran|T | as well. Hence
T̃ = 0.
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Theorem 1.3.8
If T is nilpotent of order two, then T is complex symmetric.

Example 1.3.9

Let A ∈ L(H) be any operator. If T =

(
0 A
0 0

)
, then T is

nilpotent of order two. Hence T is complex symmetric by Theorem
1.3.8.
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I Let T = U|T | ∈ L(H) be the polar decomposition of T .
Then the Aluthge transform T̃s,t is given by

T̃s,t = |T |sU|T |t for s, t > 0.

Theorem 1.3.10
If T is complex symmetric, then

T̃s,t = J(T̃t,s)∗J and T̃s,t = C (T̃ ∗s,t)C .

Hence (T̃t,s)∗ ∼= (T̃ ∗s,t) where ∼= denotes unitary equivalence.
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Corollary 1.3.11

If T is complex symmetric, then

T̃t,t = |T |tU|T |t

is complex symmetric. In other words, if T = CT ∗C for some
conjugation C , then there exists a conjugation J such that

T̃t,t = J(T̃t,t)
∗J.
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Example 1.3.12

Consider T =

0 1 1
0 0 1
0 0 0

 on C3. Let T = U|T | be the polar

decomposition of T . Then

U =

0 2√
5

1√
5

0 −1√
5

2√
5

0 0 0

 and |T | =

0 0 0
0 2√

5
1√
5

0 1√
5

3√
5

 .

Then T is complex symmetric with respect to
C (z1, z2, z3) = (z3, z2, z1).
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(i) We consider the case s = t. If s = t = 1, then

T̃s,t = |T |U|T | =

0 0 0
0 0 2√

5

0 0 1√
5


and

J(T̃s,t)
∗J = J|T |U∗|T |J

= CU|T |U∗|T |U∗C = CU(T ∗)2C =

0 0 0
0 0 2√

5

0 0 1√
5

 .

Hence T̃s,t = J(T̃s,t)
∗J and T̃s,t is complex symmetric with the

conjugation J.
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(ii) We consider the case s 6= t. If s = 2, t = 1, then

T̃s,t = |T |2U|T | =

0 0 0
0 0 1
0 0 1


and

J(T̃s,t)
∗J = CU|T |U∗|T |2U∗C =

0 0 0
0 2

5
6
5

0 1
5

3
5

 .

Hence T̃s,t 6= J(T̃s,t)
∗J.
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I For an operator T ∈ L(H), T ∗ denotes the adjoint of T .

I T is said to be normal if T ∗T = TT ∗

I T is said to be quasinormal if T ∗T and T commute

I T is said to be hyponormal if T ∗T − TT ∗ ≥ 0.

I For 0 < p ≤ 1, we say that an operator T ∈ L(H) is
p-hyponormal if (T ∗T )p ≥ (TT ∗)p.
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I ([Aluthge and Wang]) T is w-hyponormal if and only if

|T | ≥ (|T |
1
2 |T ∗||T |

1
2 )

1
2 and (|T ∗|

1
2 |T ||T ∗|

1
2 )

1
2 ≥ |T ∗|,

I if and only if
|T̃ | ≥ |T | ≥ |(T̃ )∗|.

I ([Ito]) T belongs to class wA(s, t) for s, t > 0 if and only if

|T |2s ≥ (|T |s |T ∗|2t |T |s)
s

s+t and (|T ∗|t |T |2s |T ∗|t)
t

s+t ≥ |T ∗|2t ,

I if and only if

|T̃s,t |
2t
s+t ≥ |T |2t and |T |2s ≥ |(T̃s,t)

∗|
2s
s+t .
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Lemma 1.3.13
If T is complex symmetric and p-hyponormal, then T is normal.

Proof.
Let T be complex symmetric with the conjugation C . Since T is
p-hyponormal, it follows that

〈Cx ,C ((T ∗T )p−(TT ∗)p)x〉 = 〈((T ∗T )p−(TT ∗)p)x , x〉 ≥ 0 (6)

for any x ∈ H. Moreover, since C (T ∗T )p = (TT ∗)pC , we have

〈Cx , ((TT ∗)p − (T ∗T )p)Cx〉 ≥ 0

for any x ∈ H, i.e., 〈y , ((TT ∗)p − (T ∗T )p)y〉 ≥ 0 for any y ∈ H.



Complex symmetric operators and their applications

Lecture 1. Preliminaries

Aluthge transform of CSOs and applications

Proof.
Thus

〈((TT ∗)p − (T ∗T )p)y , y〉 ≥ 0 (7)

for any y ∈ H. From (6) ad (7), we get (T ∗T )p = (TT ∗)p and so
T ∗T = TT ∗. Hence T is normal.

Theorem 1.3.14
If T is complex symmetric with the conjugation C , then the
following are equivalent;
(i) T is w -hyponormal,
(ii) T belongs to class wA(t, t),
(iii) C and |T | commute,
(iv) T is normal.
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Proof.
Since note that T is w -hyponormal if and only if T belongs to
class wA( 1

2 ,
1
2 ), it suffices to prove (ii)⇒ (iii)⇒ (iv)⇒ (i).

(ii)⇒ (iii); If T belongs to class wA(t, t), then T̃t,t is
semi-hyponormal. Since T is complex symmetric, it follows from
Corollary 1.3.11 that T̃t,t is complex symmetric. By Lemma

1.3.13, T̃t,t is normal and so T is normal.
(iii)⇒ (iv); The proof follows from Lemma 1.3.5.
(iv)⇒ (i); Since C |T | = |T |C , it follows that |T | = |T ∗|. Hence
T is w -hyponormal.
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Complex symmetric operators

2. Complex symmetric operators
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On the generalized mean transform of complex symmetric operators

m-Complex symmetric operators

2.1. The generalized mean transform
of complex symmetric operators

BCKL C. Benhida, M. Cho, E. Ko, and J. E. Lee, On the generalized
mean transform of complex symmetric operators, Banach J.
Math. Anal., in press.
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Generalized mean transforms

I If T = U|T | is the polar decomposition of an operator
T ∈ L(H), then the generalized Aluthge transform T̃ (t) of T
is defined by T̃ (t) := |T |tU|T |1−t for some t ∈ [0, 1

2 ] where

T̃ (0) = T .

I In particular, T̃ ( 1
2 ) := |T |

1
2U|T |

1
2 is called the Aluthge

transform of T (see [JKP]).

I The Duggal transform T̃D of T is given by T̃D := |T |U (see
[JKP2]).

I The mean transform T̂ of T is defined by T̂ := 1
2 (T + T̃D)

(see [LLY]).
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Generalized mean transforms

Definition 2.1.1
The generalized mean transform T̂ (t) of T ∈ L(H) is defined by

T̂ (t) :=
1

2
[T̃ (t) + T̃ (1− t)]

where T̃ (t) = |T |tU|T |1−t denotes the generalized Aluthge
transform of T for some t ∈ [0, 1

2 ]. In particular, T̂ (0) = T̂ is the

mean transform of T and T̂ ( 1
2 ) = T̃ is the Aluthge transform of

T .
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Generalized mean transforms

Recall that the numerical range W (T ) of T is defined as

W (T ) := {〈Tx , x〉 : x ∈ H, ‖x‖ = 1}

and the numerical radius w(T ) of T is defined by

w(T ) := sup{|λ| : λ ∈W (T )}.
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Generalized mean transforms

Theorem 2.1.2
Let T = U|T | be the polar decomposition of T ∈ L(H) and let
t ∈ [0, 1

2 ]. Then the following properties hold;

(i) k̂T (t) = kT̂ (t) for every complex number k.

(ii) V̂TV ∗(t) = V T̂ (t)V ∗ for every unitary operator V .
(iii) T is quasinormal if and only if T̂ (t) = T.
(iv) ‖T̂ (t)‖ ≤ ‖T̂‖ ≤ ‖T‖ and w(T̃ ) ≤ w(T̂ (t)).
(v) If ker(T ) ⊂ ker(T ∗), then

ker(T̂ (t)) ⊂ ker(T ) ∩ ker(T̃ (t))

holds for t 6= 0. In particular, if T̂ (t) = 0, then T = 0.
(vi) If T is invertible, then T̂ (t) is invertible.
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Generalized mean transforms

Corollary 2.1.3

Let T ∈ L(H) be complex symmetric and let t ∈ (0, 1
2 ). If T is

p-hyponormal, then T̂ (t) is normal.

Proof.
Since T is complex symmetric and p-hyponormal, it follows from
Lemma 1.3.13 that T is normal. By Theorem 2.1.2, T̂ (t) = T and
it is normal.
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Generalized mean transforms

Let Wα be the weighted shift on H with positive weights
α = {αn}∞n=0. By a direct computation, the mean transform of
Wα is the following weighted shift operator (see [LLY]);

Ŵα = (
α0 + α1

2
,
α1 + α2

2
, · · · , · · · ) (8)

and its generalized mean transforms are given by

Ŵα(t) = (
α0

tα1
1−t + α0

1−tα1
t

2
,
α1

tα2
1−t + α1

1−tα2
t

2
, · · · , · · · ).

(9)

LLY S. Lee, W. Lee and J. Yoon, The mean transform of bounded
linear operators, J. Math. Anal. Appl. 410(2014), 70-81.
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Generalized mean transforms

Proposition 2.1.3

Let Wα be the weighted shift on H with positive weights
α = {αn}∞n=0 and let t ∈ (0, 1

2 ]. Then the following statements
hold.
(i) If Wα is hyponormal, then Ŵα(t) is hyponormal.

(ii) If Ŵα is hyponormal, then Ŵα(t) is hyponormal.

(iii) Ŵα(t) is hyponormal if and only if

γn(γtn+1 + γ1−t
n+1) ≥ γtn + γ1−t

n (10)

where γn = αn+1

αn
for all n ≥ 0.
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Generalized mean transforms

Example 2.1.4

With the same notations as in Proposition 2.1.3, if

α = {1, 2, 1, 2, · · · , · · · }.

then

γ = {2, 1

2
, 2,

1

2
, · · · , · · · }.

If γn+1 = 2, then γn = 1
2 and so 1

2 (2t + 21−t) = 1
21−t + 1

2t holds.

If γn+1 = 1
2 , then γn = 2 and so 2( 1

2t + 1
21−t ) = 2t + 21−t holds.

Hence, by Proposition 2.1.3(iii), Ŵα(t) is hyponormal.
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Generalized mean transforms

Remark
If t = 0 in (10), then the inequality

γn(γ0
n+1 + γ1

n+1) ≥ γ0
n + γ1

n

implies γnγn+1 ≥ 1, which means that Ŵα is hyponormal. The
converse of Proposition 2.1.3(ii) does not hold, in general.
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Generalized mean transforms

Example 2.1.5

With the same notations as in Proposition 2.1.3, if

α = {1, 1, 1, 1

2
, 1,

1

3
, 1,

1

4
, · · · , · · · },

then

γ = {1, 1, 1

2
, 2,

1

3
, 3,

1

4
, 4, · · · , · · · }.

If γn+1 = k for k ∈ N, then γn = 1
k and so

1
k (kt + k1−t) = 1

k1−t + 1
kt holds. If γn+1 = 1

k for k ∈ N, then

γn = k and so k( 1
kt + 1

k1−t ) = kt + k1−t holds. Hence, by

Proposition 2.1.3(iii), Ŵα(t) is hyponormal. However, Ŵα is not
hyponormal since αn ≤ αn+2 does not hold.
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Generalized mean transforms

We now consider the property of an operator T in the class δ(H)
(see [LLY]). Put

δ(H) = {T ∈ L(H) : U2|T | = |T |U2}.

Theorem 2.1.6
If T ∈ L(H) is hyponormal which belongs in class δ(H), then the
generalized mean transform T̂ (t) of T is normal all t ∈ (0, 1

2 ].
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Generalized mean transforms

The converse of Theorem 2.1.6 does not hold as it is shown by the
following example.

Example 2.1.7

Consider T =

(
0 P
I 0

)
∈ L(H⊕H) where P is a positive

semidefinite compact operator with a nontrivial kernel. Then

T = UT |T | =

(
0 I
I 0

)(
I 0
0 P

)
and so T ∈ δ(H⊕H). Since

|T | =

(
I 0
0 P

)
, it follows that |T |t = (I ⊕ P)t = I ⊕ Pt .
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Generalized mean transforms

Example

Moreover, since UT =

(
0 I
I 0

)
, we have

T̃ (t) = |T |tUT |T |1−t =

(
0 P1−t

Pt 0

)
= T̃ (1− t)∗

and

T̃ (t)∗ = |T |1−tU∗T |T |t =

(
0 Pt

P1−t 0

)
= T̃ (1− t).

Therefore T̂ (t) = T̂ (t)∗ =

(
0 Pt+P1−t

2
P1−t+Pt

2 0

)
. Hence T̂ (t) is

normal for t ∈ (0, 1
2 ]. However, T is not hyponormal.
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Generalized mean transform of CSOs

Lemma 2.1.8
Let T = U|T | be the polar decomposition T ∈ L(H). If
T = V |T | is another decomposition of T , then

T̃ (t) = |T |tU|T |1−t = |T |tV |T |1−t for every 0 ≤ t < 1.

Remark
It is important to notice that this may not be true for t = 1.
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Generalized mean transform of CSOs

Lemma 2.1.9
Let T = U|T | be the polar decomposition of T ∈ L(H). Suppose
that T is complex symmetric with a conjugation C . Then
T = U|T | = CJ|T | = CJ̃|T |, where J̃ is any conjugation that
extends J and we have

1. J̃|T |t = |T |t J̃ for all 0 ≤ t ≤ 1.

2. J̃T̃ (t)J̃ =
(
T̃ (1− t)

)∗
for all 0 < t < 1.
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Generalized mean transform of CSOs

Example 2.1.10

If T =


0 1 0 0
0 0 2 0
0 0 0 1
0 0 0 0

 on C4, then T is complex symmetric and

the generalized Aluthge transforms T̃ (t) are not complex
symmetric for t ∈ (0, 1

2 ) by [Lemma 2.8 and Proposition 5.3 in

[LZ2]. However, the generalized mean transform T̂ (t) is complex
symmetric.

LZ2 S. Zhu and C. G. Li, Complex symmetric weighted shift,
Trans. Amer. Math. Soc. 365(2013), no.1, 511-530.
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Generalized mean transform of CSOs
Indeed,

if T =


0 1 0 0
0 0 2 0
0 0 0 1
0 0 0 0

 on C4,

then U =


0 1 0 0
0 0 1 0
0 0 0 1
0 0 0 0

 and |T | =


0 0 0 0
0 1 0 0
0 0 2 0
0 0 0 1

 .

Therefore, we obtain for 0 < t ≤ 1

T̃ (t) = |T |tU|T |1−t =


0 0 0 0
0 0 21−t 0
0 0 0 2t

0 0 0 0

 .
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Generalized mean transform of CSOs

Hence, by [LZ2], T is a complex symmetric operator and by [LZ2]
and [GW, Lemma 1], T̃ (t) is a complex symmetric operator if and
only if t = 1

2 .
On the other hand, the generalized mean transform is

T̂ (t) =
1

2
[T̃ (t)+T̃ (1−t)] = (2t−1 +2−t)


0 0 0 0
0 0 1 0
0 0 0 1
0 0 0 0

 , (t 6= 0).

Thus T̂ (t) = 0⊕ (2t−1 + 2−t)

0 1 0
0 0 1
0 0 0

 is complex symmetric

from [LZ2, Proposition 3.2] and [GW, Lemma 1].
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Theorem 2.1.11
Let T ∈ L(H) be a complex symmetric operator. Then the
generalized mean transform of T is complex symmetric for
t ∈ (0, 1

2 ].
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Lemma 2.1.12
Let T = U|T | be the polar decomposition of T ∈ L(H). Suppose
that T is complex symmetric with a conjugation C . Then
T = U|T | = CJ|T | = CJ̃|T |, where J̃ is a conjugation that
extends J and we have

1. T ∗ = U∗|T ∗| = JC |T ∗| = J̃C |T ∗|.
2. CT̃ ∗(t)C = T̃ (t) for all t ∈ (0, 1).

Theorem 2.1.13
Let T ∈ L(H) be a complex symmetric operator. Then

1. T̃ ∗(t) and (T̃ (1− t))∗ are unitarily equivalent for all
t ∈ (0, 1).

2. T̂ ∗(t) and (T̂ (t))∗ are unitarily equivalent for every t ∈ (0, 1
2 ].
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Lemma 2.1.14
(Proposition 3.2 in [LZ2]) Let {ej}j=1

n be an orthonormal basis of
Cn. If T =

∑n−1
j=1 λjej ⊗ ej+1 and λj 6= 0 for all j . Then T is

complex symmetric if and only if |λj | = |λn−j | for all 1 ≤ j ≤ n− 1.

Proposition 2.1.15

Suppose that T =
∑n−1

j=1 λjej ⊗ ej+1 where n ≥ 3 and λj are
complex numbers such that λ1 6= 0 and |λj |+ |λj+1| 6= 0 for all j .

Then T̂ is complex symmetric if and only if

|λ1| = |λn−2|+ |λn−1| and |λj |+ |λj+1| = |λn−j−1|+ |λn−j−2|

for all 1 ≤ j ≤ n − 2.
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Example 2.1.16

If T =


0 2 0 0
0 0 1 0
0 0 0 1
0 0 0 0

 on C4, then T̂ =


0 1 0 0
0 0 3

2 0
0 0 0 1
0 0 0 0

 is

complex symmetric by Lemma 2.1.14 and Proposition 2.1.15. But,
T is not complex symmetric by Lemma 2.1.14.

Remark
1) In general, the mean transform T̂ of a complex symmetric
operator T may not be complex symmetric ([Theorem 5.2(2) in
[Ben]).

Ben C. Benhida, Mind Duggal transform,
http://arxiv.org/abs/1804.00877, Filomat, to appear.
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Remark
2) In general, let n be an odd number. If the mean transform T̂ of
T is complex symmetric, then

|λ1| = |λn−2|+ |λn−1|
...

|λ n−1
2
−1|+ |λ n−1

2
| = |λ n−1

2
|+ |λ n−1

2
+1|

...

|λ1|+ |λ2| = |λn−3|+ |λn−2|.

This implies that |λ n−1
2
−1| = |λ n−1

2
+1| and so on. From this, we

deduce |λn−1| = 0.
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I Recall that an operator T ∈ L(H) is said to be skew complex
symmetric if there exists a conjugation C on H such that
CTC = −T ∗.

I A map K on H is called an anti-conjugation if K is
conjugate-linear, K 2 = −I , and 〈Kx ,Ky〉 = 〈y , x〉 for all
x , y ∈ H.

I For a subspace M of H, a conjugate-linear map K on H is
called a partial anti-conjugation supported on M if
ker(K ) =M reduces K and K |M⊥ is an anti-conjugation.
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Theorem 2.1.17
Let T = U|T | be the polar decomposition T ∈ L(H). Suppose
that T is skew complex symmetric with a conjugation C . If dim
ker(T ) is even or ∞, then there exists an anti-conjugation K such
that T = U|T | = CK |T | and we have

1. K |T |t = |T |tK for all 0 ≤ t ≤ 1.

2. KT̃ (t)K =
(
T̃ (1− t)

)∗
for all 0 < t < 1.

3. T ∗ = U∗|T ∗| = −KC |T ∗|.
4. CT̃ ∗(t)C = −T̃ (t) for all 0 < t < 1.

5. T̃ ∗(t) and (T̃ (1− t))∗ are unitarily equivalent for all
t ∈ (0, 1).

6. T̂ ∗(t) and (T̂ (t))∗ are unitarily equivalent for every t ∈ (0, 1
2 ].
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Corollary 2.1.18

With the same hypothesis as above, we have

1. KT̃K =
(
T̃
)∗

.

2. T̃ ∗ and (T̃ )∗ are unitarily equivalent.

Theorem 2.1.19
Let T ∈ L(H) be a skew complex symmetric operator, i.e.,
T = −CT ∗C for a conjugation C . If dim ker(T ) is even or ∞,
there exists an anti-conjugation K such that

KT̂ (t)K =
(
T̂ (t)

)∗
for t ∈ (0,

1

2
].
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2.2. m-complex symmetric operators

CKL M. Chō, E. Ko and J. Lee, On m-complex symmetric
operators, Mediterranean Journal of Mathematics,
13(4)(2016), 2025-2038.

CKL2 M. Chō, E. Ko and J. Lee, On m-complex symmetric
operators II, 13(5)(2016), 3255-3264.

BCKL C. Benhida, M. Cho,, E. Ko and J. E. Lee, On symmetric and
skew-symmetric operators, Filomat, 32:1(2018), 293-303.
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Motivation
In 1970, J. W. Helton initiated the study of operators T ∈ L(H)
which satisfy an identity of the form

m∑
j=0

(−1)m−j
(
m
j

)
T ∗jTm−j = 0. (11)

He J. W. Helton, Operators with a representation as
multiplication by x on a Sobolev space, Colloquia Math. Soc.
Janos Bolyai 5, Hilbert Space Operators, Tihany, Hungary
(1970), 279-287.
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I A conjugation on H is an antilinear operator C : H → H
which satisfies 〈Cx ,Cy〉 = 〈y , x〉 for all x , y ∈ H and C 2 = I .

I Note that (CTC )k = CT kC and (CTC )∗ = CT ∗C for every
positive integer k , and ‖C‖ = 1.

Definition 2.2.1
An operator T ∈ L(H) is said to be an m-complex symmetric
operator if there exists some conjugation C such that

m∑
j=0

(−1)m−j
(
m
j

)
T ∗jCTm−jC = 0

for some positive integer m. In this case, we say that T is
m-complex symmetric with conjugation C .
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I Set ∆m(T ) :=
∑m

j=0(−1)m−j
(
m
j

)
T ∗jCTm−jC .

I T is an m-complex symmetric operator with conjugation C if
and only if ∆m(T ) = 0.

I Note that

T ∗∆m(T )−∆m(T )(CTC ) = ∆m+1(T ). (12)

I If T is m-complex symmetric with conjugation C , then T is
n-complex symmetric with conjugation C for all n ≥ m.

I A 1-complex symmetric operator is complex symmetric.
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Examples of m-CSOs

I Normal operators, Algebraic operator of order 2, Aluthge
transform of CSO, Truncated Toeplitz operator, Finite
Toeplitz matrices, and Hankel matrices.

I (S. R. Garcia and M. Putinar, 2006);
If T is nilpotent of order 2, then T is complex symmetric.
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Example 2.2.2

Let T ∈ L(H) and let C be a conjugation on H. If T is nilpotent
of order k > 2 and T ∗ 6= CTC , then T is a (2k − 1)-complex
symmetric operator with conjugation C . Indeed, since T is
nilpotent of order k , it gives that CT jC = T ∗j = 0 for all j ≥ k .
Then since max{j , 2k − 1− j} ≥ k for any
j (j = 0, 1, 2, ..., 2k − 1), we get

2k−1∑
j=0

(−1)2k−1−j
(

2k − 1
j

)
T ∗jCT 2k−1−jC = 0.

Hence T is a (2k − 1)-complex symmetric operator with
conjugation C .
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Example 2.2.3

Let C be a conjugation given by C (z1, z2, z3) = (z1, z2, z3) on C3.

If T =

0 1 0
0 0 2
0 0 0

 on C3, then T 3 = 0 and T is a not complex

symmetric operator by [GP]. Hence T is a 5-complex symmetric
operator with conjugation C . However, since T 3 = 0, we have

4∑
j=0

(−1)4−j
(

4
j

)
T ∗jCT 4−jC = 6T ∗2CT 2C =

0 0 0
0 0 0
0 0 24

 6= 0.

So it is not a 4-complex symmetric operator.
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Example 2.2.4

Let C be a conjugation on H and a self-adjoint operator R ∈ L(H)
be complex symmetric with C , i.e., R = CRC . If RQ = QR and
Qk = 0 for some k > 2 with Q∗ 6= CQC , then an operator
T = R + Q is (2k − 1)-complex symmetric with conjugation C .
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Some spectrums

I The spectrum of T ∈ L(H) is defined by

σ(T ) = {λ ∈ C : T − λI is not invertible}.

I The point spectrum of T ∈ L(H) is defined by

σp(T ) := {λ ∈ C : ker(T − λ) 6= (0)}.

I The approximate point spectrum of T ∈ L(H) is defined by

σa(T ) := {λ ∈ C : ∃ {xn} ∈ H s.t. ‖xn‖ = 1 ∀n and

lim
n→∞

‖(T − λ)xn‖ = 0}.
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I Two vectors x and y are C -orthogonal if 〈Cx , y〉 = 0.

Theorem 2.2.5
Let T ∈ L(H) be an m-complex symmetric operator with
conjugation C .
(i) If λ is an eigenvalue of T , then λ is an eigenvalue of T ∗.
(ii) Eigenvectors of T corresponding to distinct eigenvalues are
C -orthogonal.
(iii) If λ ∈ σap(T ), then λ ∈ σap(T ∗).
(iv) Let λ 6= µ. If {xn}, {yn} are sequences of unit vectors such
that limn→∞(T − λ)xn = 0 and limn→∞(T − µ)yn = 0, then
limn→∞〈Cxn, yn〉 = 0.
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I T ∈ L(H) is said to be isoloid if for any λ ∈ isoσ(T ), λ ∈ C
is an eigenvalue of T , where iso∆ denotes the set of all
isolated points of ∆.

Corollary 2.2.6

Let T ∈ L(H) be m-complex symmetric with conjugation C . If T
is isoloid, then T ∗ is also isoloid.

Proof.
Assume that T is isoloid. If λ ∈ isoσ(T ∗) = isoσ(T )∗, then
λ ∈ isoσ(T ) and hence λ ∈ σp(T ). By Theorem 2.2.5,
λ ∈ σp(T ∗). So, T ∗ is also isoloid.



Complex symmetric operators and their applications

Lecture 2. Complex symmetric operators

m-Complex symmetric operators

m-Complex symmetric operators

Theorem 2.2.7
If {Tk} is a sequence of m-complex symmetric operators with
conjugation C such that limk→∞ ‖Tk − T‖ = 0, then T is also
m-complex symmetric with conjugation C .

Proposition 2.2.8

Let T ∈ L(H) be invertible and let C be a conjugation on H.
(i) If T ∗jCTm−jC = CTm−jCT ∗j for j = 0, 1, · · · ,m, then T is
m-complex symmetric with conjugation C if and only if CT ∗−1C
is m-complex symmetric with conjugation C .
(ii) T is m-complex symmetric with conjugation C if and only if
T−1 is m-complex symmetric with conjugation C .
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Theorem 2.2.9
If T ∈ L(H) is an m-complex symmetric operator with conjugation
C , then T n is also m-complex symmetric with conjugation C for
some n ∈ N.

Corollary 2.2.10

Let T ∈ L(H) be m-complex symmetric with conjugation C . If

limn→∞ ‖T nx‖
1
n = 0, then limn→∞ ‖T ∗mnCx‖

1
n = 0.
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SVEP

Single-valued extension property

I We say that an operator T has the single-valued extension
property at λ (abbreviated SVEP at λ) if for every open set U
containing λ the only analytic function f : U −→ H which
satisfies the equation

(T − λ)f (λ) = 0

is the constant function f ≡ 0 on U.

I T has SVEP if T has SVEP at every point λ ∈ C.
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Property (β) [1959, E. Bishop]

An operator T ∈ L(H) is said to have the property (β) if for every
open subset G of C and every sequence fn : G → H of H-valued
analytic functions such that (T − z)fn(z) converges uniformly to 0
in norm on compact subsets of G , then fn(z) converges uniformly
to 0 in norm on compact subsets of G .
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Decomposable

Decomposable [1963, C. Foias]

An operator T ∈ L(H) is said to be decomposable if for every
open cover {U,V } of C there are T -invariant subspaces M and
N such that H =M+N , σ(T |M) ⊂ U, and σ(T |N ) ⊂ V .

Decomposable⇒ Property (β)⇒ SVEP.
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ISP, Invariant subspace problem

VON NEUMANN (1932)

Does every bounded linear operator T on a separable Hilbert space
H over complex C have a non-trivial invariant subspace?

I M is nontrivial if it is different from (0) and H.

I A closed subspace M⊂ H is invariant for T if TM⊂M.

I M is hyperinvariant for T if it is invariant for every operator
in {T}′ = {S ∈ L(H) : TS = ST} of T .
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Theorem 2.2.11
((2011, JMAA) Jung, Ko, Lee, and Lee) Let T ∈ L(H) be a
complex symmetric operator with conjugation C . Then T has
property (β) if and only if T is decomposable.

Theorem 2.2.12
Let T ∈ L(H) be an m-complex symmetric operator with
conjugation C . Then T ∗ has the property (β) if and only if T is
decomposable.
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Corollary 2.2.13

Let T ∈ L(H) be m-complex symmetric operators.
(i) If T ∗ is hyponormal, i.e. TT ∗ ≥ T ∗T , then T is decomposable.
(ii) If T ∗ has the property (β) and σ(T ) has nonempty interior,
then T has a nontrivial invariant subspace.
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Proof.
(i) Since T ∗ is hyponormal, then it has the property (β). So, the
proof follows from Theorem 2.2.12.
(ii) If T ∗ has the property (β), then T is decomposable from
Theorem 2.2.12. So, in this case, T has the property (β) by [LN].
Since σ(T ) has nonempty interior, we get this result from
Theorem 2.1 in [Es].

Es J. Eschmeier, Invariant subspaces for operators with Bishop’s
property (β) and thick spectrum, J. Funct. Anal. 94(1990),
196-222.
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I ρT (x) = {λ0 ∈ C : ∃ an H-valued analytic function f
defined in a neighborhood of λ0 s.t. (λI − T )f (λ) ≡ x}
: the local resolvent set of x .

I σT (x) = C\ρT (x) : the local spectrum of T at x .

I HT (F ) = {x ∈ H : σT (x) ⊂ F} where F ⊂ C
: the local spectral subspace of T .

Theorem 2.2.14
Let T ∈ L(H) be an m-complex symmetric operator with
conjugation C . If T ∗ has the single-valued extension property, then
T has the single-valued extension property. Moreover, in this case,
σT∗(x) ⊂ σT (Cx)∗ for all x ∈ H.
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Corollary 2.2.15

Let T ∈ L(H) be an m-complex symmetric operator with
conjugation C . If T ∗ has the single-valued extension property, then

CHT (F ) ⊂ HT∗(F
∗)

where F ∗ := {z̄ : z ∈ F} for any set F in C.

Proof.
If x ∈ CHT (F ), then Cx ∈ HT (F ) and so σT (Cx) ⊂ F . Thus
σT (Cx)∗ ⊂ F ∗. Since σT∗(x) ⊂ σT (Cx)∗ by Theorem 2.2.14, it
ensures that σT∗(x) ⊂ F ∗ and so x ∈ HT∗(F

∗). Hence
CHT (F ) ⊂ HT∗(F

∗).
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I Assume that T has the single-valued extension property. If
there exists a constant k such that for every x , y ∈ H with
σT (x) ∩ σT (y) = ∅ we have

‖ x ‖≤ k ‖ x + y ‖

where k is independent of x and y , we say that an operator T
satisfies Dunford’s boundedness condition (B).

Corollary 2.2.16

Let T ∈ L(H) be an m-complex symmetric operator with
conjugation C . If T ∗ has the single-valued extension property and
the Dunford’s boundedness condition (B), then T also has the
Dunford’s boundedness condition (B).
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Proof.
By Theorem 2.2.14, we know that T has the single-valued
extension property. Assume that x and y are any vectors in H such
that σT (x) ∩ σT (y) = ∅. Since CH = H, there exist x1, y1 ∈ H
such that x = Cx1 and y = Cy1. Hence σT (Cx1) ∩ σT (Cy1) = ∅,
i.e., σT (Cx1)∗ ∩ σT (Cy1)∗ = ∅. By Theorem 2.2.14, we have

σT∗(x1) ∩ σT∗(y1) = ∅.
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Proof.
Since T ∗ has the Dunford’s boundedness condition (B), there
exists a constant k such that

‖ x1 ‖≤ k ‖ x1 + y1 ‖

where k is independent of x1 and y1. Moreover, since x1 = Cx and
y1 = Cy , there is a constant k such that

‖ Cx ‖≤ k ‖ Cx + Cy ‖, i.e., ‖ x ‖≤ k ‖ x + y ‖ .

Hence T also has the Dunford’s boundedness condition (B).
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I Set ∆m(T ) :=
∑m

j=0(−1)m−j
(
m
j

)
T ∗jCTm−jC .

I For 0 < p ≤ 1, an operator T ∈ L(H) is said to be
p-hyponormal if (T ∗T )p ≥ (TT ∗)p.

Theorem 2.2.17
Let T be an operator on H and C be a conjugation on H.
(i) If m is even, then ∆m(T ) is complex symmetric with the
conjugation C . In this case, if ∆m(T ) is p-hyponormal, then it is
normal.
(ii) If m is odd, then ∆m(T ) is skew complex symmetric with the
conjugation C . In this case, if ∆m(T ) = 0 and ∆m−1(T ) is
p-hyponormal, then T ∗∆m−1(T ) = ∆m−1(T )CTC and ∆m−1(T )
is normal.
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Theorem
(iii) Let

Km(T ) :=
⋂
n≥m

ker(∆n(T )).

If K1(T ) 6= {0} and Km(T ) 6= H, then the subspace C (Km(T )) is
a nontrivial invariant subspace for T .
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Corollary 2.2.18

Let T be an operator on H and C be a conjugation on H.
(i) If m is even, then σ(∆m(T )) = σap(∆m(T )).
(ii) If m is odd, then σ(∆m(T )) = σap(∆m(T )) ∪ [−σap(∆m(T ))].
(iii) If m is odd and ∆m(T ) has finite rank k , then the rank of
∆m(T ) is even.
(iv) If K1(T ) 6= {0} and 1 6∈ σp(CTC ), then C (K1(T )) has at
least two distinct elements of H.
(v) Put Fn(T ) :=

⋂
n≤j≤m−1

ker(∆j(T )) for n = 1, 2, · · · ,m − 1. If

T is a strict m-complex symmetric operator and F1(T ) 6= {0},
then CFn(T ) is a nontrivial invariant subspace for T where
n = 1, 2, · · · ,m − 1.
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I T ∈ L(H) is said to be a normaloid operator if ‖T‖ = r(T )
where r(T ) is the spectral radius of T .

I A vector x ∈ H is said to be isotropic if 〈x ,Cx〉 = 0 ([GPP]).

Theorem 2.2.19
Let T ∈ L(H) and C be a conjugation on H. Suppose
∆m+1(T ) = 0, ∆m(T ) is normaloid, and an eigenvector
corresponding to every eigenvalue in σp(∆m(T )) is not isotropic.
Assume that one of the following statements holds;
(i) When m is even, for every µ ∈ σap(∆m(T )) there exist
λ ∈ σ(∆1(T )) and a sequence {xn} of unit vectors such that
|λ|m = |µ| and

lim
n→∞

‖(∆m(T )− µ)xn‖ = lim
n→∞

‖(∆1(T )− λ)xn‖ = 0.
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Theorem
(ii) When m is odd, for every µ ∈ σap(∆m(T )) there exist
λ ∈ σ(T ∗ + CTC ) and a sequence {xn} of unit vectors such that
|λ|m = |µ| and

lim
n→∞

‖(∆m(T )− µ)xn‖ = lim
n→∞

‖((T ∗ + CTC )− λ)xn‖ = 0.

Then ∆m(T ) = 0.
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Corollary 2.2.20

Let C be a conjugation on H and let T ∈ L(H) be a strict
(m + 1)-complex symmetric operator, and an eigenvector
corresponding to every eigenvalue in σp(∆m(T )) be not isotropic.
If one of the following statements holds;
(i) When m is even, for every µ ∈ σap(∆m(T )), there exist
λ ∈ σ(∆1(T )) and a sequence {xn} of unit vectors such that
|λ|m = |µ| and

lim
n→∞

‖(∆m(T )− µ)xn‖ = lim
n→∞

‖(∆1(T )− λ)xn‖ = 0,
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Corollary

(ii) When m is odd, for every µ ∈ σap(∆m(T )), there exist
λ ∈ σ(T ∗ + CTC ) and a sequence {xn} of unit vectors such that
|λ|m = |µ| and

lim
n→∞

‖(∆m(T )− µ)xn‖ = lim
n→∞

‖((T ∗ + CTC )− λ)xn‖ = 0,

then ∆m(T ) is not normaloid.
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Using (12), we know that if ∆m(T ) = 0, then ∆m+1(T ) = 0.
Unlike Theorem 2.2.19, we need a simple condition in the following
theorem.

Theorem 2.2.21
For an operator T ∈ L(H), let ∆2(T ) = 0. If T is Hermitian or
∆1(T ) is p-hyponormal, then ∆1(T ) = 0.

Corollary 2.2.22

Let C be a conjugation operator on H, H and K be Hermitian
operators. Suppose that T = H + iK ∈ L(H) satisfies
HCK = KCH and CRC ≥ R, where R = i(HK − KH). If
∆2(T ) = 0, then ∆1(T ) = 0.
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Some useful spectral properties

An operator T on H is antilinear if for all x , y ∈ H

T (αx + βy) = αTx + βTy

holds for all α, β ∈ C.

Lemma 2.2.23
Let B and C be antilinear operators on H. Then the following
properties hold;

I BC and CB are linear operators.

I γB + δC is an antilinear operator for any γ, δ ∈ C.

I If D is a linear operator, then BD,DB,CD, and DC are
antilinear operators.

I If B−1 exists, then B−1 is an antilinear operator.
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Some useful spectral properties

For an antilinear operator T , a Hermitian adjoint operator of T on
H is an antilinear operator T † : H → H with the property;

〈Tx , y〉 = 〈x ,T †y〉 (13)

for all x , y ∈ H. If an antilinear operator T is bounded, then, by
the Riesz representation theorem, the Hermitian adjoint of T exists
and is unique ([CVLL, Page 90]). For antilinear operators T and
R, we get immediately from (13) that (T †)† = T ,
(T + R)† = T † + R† and (TR)† = R†T †.

CVLL G. Cassinelli, E. Vito, A. Levrero, P. J. Lahti, The Theory of
Symmetry Actions in Quantum Mechanics, Springer.
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Some useful spectral properties

Let’s start by the following result which is a slight variation of
Jacobson’s lemma.

Proposition 2.2.24

Let B and C be two antilinear bounded operators on H. Then BC
and CB are in L(H) and

I − CB is invertible ⇐⇒ I − BC is invertible. (14)
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Global spectral properties
For T ∈ L(H), we write σ(T ), σp(T ), σap(T ), σsu(T ), σr (T ),
and σc(T ) for the spectrum, the point spectrum, the approximate
point spectrum, the surjective spectrum, the residual spectrum,
and continuous spectrum of T , respectively.

Proposition 2.2.25

Let B and C be two antilinear bounded operators on H. Then the
following statements hold;

I σ(BC ) \ {0} = σ(CB)∗ \ {0}
I σp(BC ) \ {0} = σp(CB)∗ \ {0}
I σap(BC ) \ {0} = σap(CB)∗ \ {0}
I σr (BC ) \ {0} = σr (CB)∗ \ {0}
I σc(BC ) \ {0} = σc(CB)∗ \ {0}

where E ∗ := {λ̄ : λ ∈ E} for E ⊂ C.
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Global spectral properties
We define Weyl spectrum, σw (T ) and Browder spectrum, σb(T ),
by

σw (T ) =
⋂
{K is compact} σ(T + K )

= {λ ∈ C : T − λ is not Fredholm with index zero},

σb(T ) := {λ ∈ C : T−λ is not Fredholm of finite ascent and descent}.

An operator T in L(H) is said to satisfy Weyl’s theorem if

σw (T ) = σ(T ) \ π00(T )

where

π00(T ) = {λ ∈ iso(σ(T )) : 0 < dim(ker(T − λ)) <∞}

and iso(E ) is the set of all isolated points of E . We say that
Browder’s theorem holds for T ∈ L(H) if σb(T ) = σw (T ).
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Notice also that if B and C are antilinear, then C is naturally a
mapping of various objects related to BC into those related to CB.
For example,

C : ker(BC − λ)p −→ ker(CB − λ̄)p.

Proposition 2.2.26

Let B and C be two antilinear bounded operators on H.
If 0 ∈ π00(BC ) ∩ π00(CB) or 0 /∈ π00(CB) ∪ π00(BC ) then;
(i) BC satisfies Weyl’s theorem if and only if CB satisfies Weyl’s
theorem.
(ii) BC satisfies Browder’s theorem if and only if CB satisfies
Browder’s theorem.
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Local spectral properties

I σsvep(T ) denote the set of all points where T fails to have the
SVEP.

I For an open set U in C, we denote by O(U,H) and E(U,H)
the Fréchet space of all H-valued analytic functions on U and
the Fréchet space of all H-valued C∞-functions on U,
respectively.

I An operator T ∈ L(H) is said to satisfy Bishop’s property (β)
at λ ∈ C (resp. (β)ε) if there exists r > 0 such that for every
open subset U ⊂ D(λ, r) and for any sequence (fn) in
O(U,H) (resp. in E(U,H)) such that whenever,
(T − z)fn(z) −→ 0 in O(U,H) (resp. in E(U,H)), then
fn −→ 0 in O(U,H) (resp. in E(U,H)).

I σβ(T ) (resp. σβε(T )) is the set of all points where T does
not have property (β) (resp. (β)ε).
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Local spectral properties

I The operator T ∈ L(H) is said to have the spectral
decomposition property (δ) at λ if there exists an open
neighborhood U of λ such that for every finite open cover
{U1, . . . ,Un} of C, with σ(T ) \ U ⊆ U1, we have

XT (Ū1) + · · ·+ XT (Ūn) = H, (15)

where XT (F ) is the set of elements x ∈ H such that the
equation (T − λ)f (λ) = x has a global analytic solution on
C \ F .

I The δ-spectrum σδ(T ) and the decomposability spectrum
σdec(T ) are defined in a similar way.
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Local spectral properties

Proposition 2.2.27

Let B and C be antilinear bounded operators on H. Then BC and
CB are in L(H) and

I σsvep(BC ) = σsvep(CB)∗

I σβ(BC ) = σβ(CB)∗

I σβε(BC ) = σβε(CB)∗

I σδ(BC ) = σδ(CB)∗

I σdec(BC ) = σdec(CB)∗.
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Local spectral properties

I An antilinear bounded operator A on H is called normal if A
and A† commute where A† satisfies (13) (see [Uh, Section
4.1, Page 27 ]).

Proposition 2.2.28

Let B and C be antilinear bounded operators on H. Then
σ(BC ) = σ(CB)∗ in the following cases;

1. C and B are injective.

2. C and C † are injective.

3. C or B is injective with dense range.

4. C and B are not injective.

5. C and C † are not injective.

6. C or B is normal.
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Applications

I Recall that C is a conjugation on H if C : H −→ H is an
antilinear operator that satisfies 〈Cx ,Cy〉 = 〈y , x〉 for all
x , y ∈ H and C 2 = I .

Theorem 2.2.29
Let C be a conjugation on H. Then the Hermitian adjoint of C is
the conjugation C , i.e., C † = C . Conversely, assume that C is
antilinear with C 2 = I . If C † = C , then C is a conjugation on H.

Corollary 2.2.30

([GP2]) Let B and C be conjugations on H. Then BC and CB are
unitary.
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Applications

Theorem 2.2.31
Let T be in L(H) and C be a conjugation on H. Then

I σsvep(CTC ) = σsvep(T )∗

I σβ(CTC ) = σβ(T )∗

I σβε(CTC ) = σβε(T )∗

I σδ(CTC ) = σδ(T )∗

I σdec(CTC ) = σdec(T )∗.
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Applications

Theorem 2.2.32
Let T be in L(H) and C be a conjugation on H. Then

σ•(CTC ) = σ•(T )∗

when σ• ∈ {σ, σp, σap, σc , σr , σsu, σe , σw , . . . }.

Theorem 2.2.33
Let T be in L(H) and C be a conjugation on H. Then T satisfies
Weyl’s (or Browder’s) theorem if and only if CTC satisfies Weyl’s
(or Browder’s) theorem.
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Helton classes

Let A and B be two given operators in L(H). Recall the definition
of the usual derivation operator δA,B(X ) given by

δA,B(X ) = AX − XB for X ∈ L(H).

For every positive integer k , we have

δkA,B(X ) = δA,B(δk−1
A,B (X )) for X ∈ L(H).

Definition 2.2.34
Let A and B be in L(H). An operator B is said to be in
Heltonk(A) if δkA,B(I ) = 0.
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Helton classes

Theorem 2.2.35
[2008, Lee] Let A and B be in L(H). If B is in Heltonk(A) then
σp(B) ⊂ σp(A), σap(B) ⊂ σap(A), and σsu(A) ⊂ σsu(B). In
particular, σ(A) ⊂ σ(B) when A has the SVEP. Moreover, if A and
B∗ have the SVEP, then σ(A) = σ(B).

Theorem 2.2.36
[2008, Lee] Let A and B be in L(H). If B is in Heltonk(A), then

I A has the SVEP at λ =⇒ B has the SVEP at λ.

I A has (β) at λ =⇒ B has (β) at λ.

I A has (β)ε at λ =⇒ B has (β)ε at λ.
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m-Complex and m-skew complex symmetric operators

Let m be a positive integer. An operator T ∈ L(H) is said to be
an m-complex symmetric operator if there exists some conjugation
C such that ∆m(T ) = 0 where

∆m(T ) :=
m∑
j=0

(−1)m−j
(
m
j

)
T ∗jCTm−jC . (16)

An operator T ∈ L(H) is said to be an m-skew complex symmetric
operator if there exists some conjugation C such that Γm(T ) = 0
where

Γm(T ) :=
m∑
j=0

(
m
j

)
T ∗jCTm−jC . (17)
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m-Complex and m-skew complex symmetric operators

Remark
It is easy to see that

I T ∈ L(H) is an m-complex symmetric operator which means
that CTC ∈ Heltonm(T ∗).

I T ∈ L(H) is an m-skew complex symmetric operator which
means that −CTC ∈ Heltonm(T ∗).

Theorem 2.2.37
Let T be in L(H). If T is an m-complex symmetric operator, then

I T ∗ has the SVEP at λ =⇒ T has the SVEP at λ̄.

I T ∗ has (β) at λ =⇒ T has (β) at λ̄.

I T ∗ has (β)ε at λ =⇒ T has (β)ε at λ̄.
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m-Complex and m-skew complex symmetric operators

Corollary 2.3.38 [2016, CKL, Theorem 4.7]

Let T be in L(H). If T is an m-complex or m-skew complex
symmetric operator, then

T ∗ has (β)⇐⇒ T is decomposable.

For example, if T is a nilpotent operator of order k > 2, then T ∗ is
nilpotent of order k > 2 and so T ∗ is (2k − 1)-complex symmetric
from Example 3.1 in [CKL]. Moreover, in this case, T ∗ has the
property (β). Hence T is decomposable from Corollary 2.3.38.
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Complex symmetric and skew-complex symmetric operators

One could wonder why we are considering this special case
separately. There are at least two reasons.
-The first one is:
For an arbitrary conjugation C and an operator T on H, one can
write T as a sum of a complex symmetric operator and a
skew-complex symmetric operator. Namely, T = A + B where
A = −1

2 Γ1(T ∗) and B = −1
2 ∆1(T ∗) where A = CA∗C ,

B = −CB∗C .
-The second one is:
Helton1(A) = {A}. Thus we have the coincidence of many spectra
(instead of the inclusion).
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Complex symmetric and skew-complex symmetric operators

Corollary 2.2.39

Let T be in L(H).

1. If T is a complex symmetric operator, then
I T ∗ has the SVEP at λ ⇐⇒ T has the SVEP at λ̄.
I T ∗ has (β) at λ ⇐⇒ T has (β) at λ̄.
I T ∗ has (β)ε at λ ⇐⇒ T has (β)ε at λ̄.

2. If T is a skew complex symmetric operator, then
I T ∗ has the SVEP at λ ⇐⇒ T has the SVEP at −λ̄.
I T ∗ has (β) at λ ⇐⇒ T has (β) at −λ̄.
I T ∗ has (β)ε at λ ⇐⇒ T has (β)ε at −λ̄.
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Complex symmetric and skew-complex symmetric operators

Corollary 2.2.40

Let T be in L(H).

1. If T is a complex symmetric operator, then

σ•(T
∗) = σ•(T )∗.

2. If T is a skew complex symmetric operator, then

σ•(T
∗) = −σ•(T )∗

when σ• ∈ {σ, σp, σap, σc , σr , σsu, σe , σw , . . . }.
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Corollary 2.2.41 [2011, JKLL, Theorem 4.4]

Let T be in L(H). If T is a complex symmetric or a skew complex
symmetric operator, then T satisfies Weyl’s (or Browder’s)
theorem if and only if T ∗ satisfies Weyl’s (or Browder’s) theorem.
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∞-Complex symmetric operators

2.3. ∞-complex symmetric operators

CKL3 M. Chō, E. Ko and J. Lee, On ∞-complex symmetric
operators, Glasgow Mathematical Journal, 60(1)(2018),
35-50.
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∞-Complex symmetric operators

Definition 2.3.1
An operator T ∈ L(H) is called an ∞-complex symmetric operator

with conjugation C if lim sup
m→∞

‖∆m(T )‖
1
m = 0.

{1− CSO} ⊂ {2− CSO} ⊂ {3− CSO} ⊂ · · ·
⊂ {m − CSO} ⊂ · · · ⊂ {∞− CSO}.



Complex symmetric operators and their applications

Lecture 2. Complex symmetric operators

∞-Complex symmetric operators

Examples

Example 2.3.2

Let C be the canonical conjugation on H given by

C (
∞∑
n=0

xnen) =
∞∑
n=0

xnen

where {en} is an orthonormal basis of H. Given any ε > 0, choose
a positive integer N such that 1

N < ε. Fix any m > N. If W is the
weighted shift on H defined by Wen = 1

2m+n en+1 (n = 0, 1, 2, ...)
for such m, then T = I + W is an ∞-complex symmetric operator.
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Examples
Indeed, since W is a quasinilpotent operator, σ(W ) = {0}, and
∆m(T ) = ∆m(W ), it follows that

‖∆m(T )‖
1
m = ‖∆m(W )‖

1
m

≤ (
m∑
j=0

(
m
j

)
‖W ∗j‖‖CWm−jC‖)

1
m

≤ (
m∑
j=0

(
m
j

)
‖W ∗‖j‖W ‖m−j)

1
m ≤ 1

2m−1
<

1

N
< ε.

By taking limsup as m→∞ in the above inequality, we get that

lim sup
m→∞

‖∆m(T )‖
1
m ≤ ε.

Since ε is arbitrary, it follows that T is an ∞-complex symmetric
operator (cf. Theorem 2.3.4).
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∞-complex symmetric operators

I Two vectors x and y are C -orthogonal if 〈Cx , y〉 = 0.

Theorem 2.3.3
Let T ∈ L(H) be an ∞-complex symmetric operator with
conjugation C and let λ and µ be any distinct eigenvalues of T .
(i) Eigenvectors of T corresponding to λ and µ are C -orthogonal.
(ii) If {xn} and {yn} are sequences of unit vectors such that
limn→∞(T − λ)xn = 0 and limn→∞(T − µ)yn = 0, then
limk→∞〈Cxnk , ynk 〉 = 0 where 〈Cxnk , ynk 〉 is any convergent
subsequence of 〈Cxn, yn〉.

Theorem 2.3.4
Let Q be a quasinilpotent operator. Then T = aI + Q is an
∞-complex symmetric operator for all a ∈ C.
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Theorem 2.3.5 [CKL II, 2016]

Let T be an m-complex symmetric operator with a conjugation C .
If λ is an eigenvalue of T , then λ is an eigenvalue of T ∗.

I However, if T is an ∞-complex symmetric operator, this does
not hold.
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Example 2.3.6

Let C be the conjugation on H given by

C (
∞∑
n=0

xnen) =
∞∑
n=0

(−1)n+1xnen

where {en} is an orthonormal basis of H and let W be the
weighted shift on H defined by Wen = 1

n+1en+1 (n = 0, 1, 2, ...).
If T = λI + W ∗, then T is an ∞-complex symmetric operator.
Moreover, (T − λI )e0 = W ∗e0 = 0, but

(T ∗ − λI )Ce0 = WCe0 = We0 = e1 6= 0.
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∞-complex symmetric operators

Theorem 2.3.7
If {Tn} is a sequence of commuting ∞-complex symmetric
operators with conjugation C such that limn→∞ ‖Tn − T‖ = 0,
then T is also ∞-complex symmetric with conjugation C .
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Proposition 2.3.8

Let C be a conjugation on H. Assume that T ∈ L(H) is a
complex symmetric operator with conjugation C and R ∈ L(H)
commutes with T .
(i) RT is an m-complex symmetric operator with conjugation C if
and only if R is an m-complex symmetric operator on ran(Tm).
(ii) If R is an ∞-complex symmetric operator with conjugation C ,
then RT is an ∞-complex symmetric operator with conjugation C .

Corollary 2.3.9

If T is normal or algebraic operator of order 2 and R = I + Q
where Q is quasinilpotent with QT = TQ, then QT + T is an
∞-complex symmetric operator.
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∞-complex symmetric operators

Theorem 2.3.10
Let S and T be in L(H) and let C be a conjugation on H.
Suppose that TS = ST and S∗(CTC ) = (CTC )S∗ for a
conjugation C .
(i) If T and S are m-complex symmetric and n-complex symmetric,
respectively, then T + S is (m + n − 1)-complex symmetric.
(ii) If T is complex symmetric and S is an ∞-complex symmetric
operator, then T + S is ∞-complex symmetric operator.
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∞-complex symmetric operators

I XT (F ) is the set of elements x ∈ H such that the equation
(T − λ)f (λ) = x has a global analytic solution on C \ F
: the glocal spectral subspace of T .

Theorem 2.3.11 [CKL]

Let T be an m-complex symmetric operator with a conjugation C .
Then T ∗ has the property (β) if and only if T is decomposable.

Theorem 2.3.12
Let T ∈ L(H) be an ∞-complex symmetric operator with
conjugation C . Then the following statements hold:
(i) XCTC (F ) ⊂ XT∗(F ) for every closed set F in C.
(ii) T has the decomposition property (δ) if and only if T is
decomposable.
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∞-complex symmetric operators

I X ∈ L(H) is called a quasiaffinity if it has trivial kernel and
dense range.

I S ∈ L(H) is said to be a quasiaffine transform of an operator
T ∈ L(H) if there is a quasiaffinity X ∈ L(H) such that
XS = TX .

I Two operators S and T are quasisimilar if there are
quasiaffinities X and Y such that XS = TX and SY = YT .

Corollary 2.3.13

Let T ∈ L(H) be an ∞-complex symmetric operator and T have
the decomposition property (δ).
(i) If T has real spectrum on H, then exp(iT ) is decomposable.
(ii) If σ(T ) is not singleton and S ∈ L(H) is quasisimilar to T ,
then S has a nontrivial hyperinvariant subspace.
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Corollary 2.3.14

(iii) If F ⊂ C is closed, then the operator S =: T/HT (F ), induced

by T , on the quotient space H/HT (F ) satisfies σ(S) ⊂ σ(T ) \ F .
(iv) If M is a spectral maximal space of T , then
M = HT (σ(T |M)).
(v) f (T ) is decomposable where f is any analytic function on some
open neighborhood of σ(T ).
(vi) σ(T ) = σap(T ) = σsu(T ) = ∪{σT (x) : x ∈ H}.
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Tensor products of ∞-complex symmetric operators

I Let H1 ⊗H2 denote the completion (endowed with a sensible
uniform cross-norm) of the algebraic tensor product H1 ⊗H2

of H1 and H2 where H1 and H2 are separable complex
Hilbert spaces.

I For operators T ∈ L(H1) and S ∈ L(H2), we define the
tensor product operator T ⊗ S on L(H1 ⊗H2) by

(T ⊗ S)(
n∑

j=1

αjxj ⊗ yj) =
n∑

j=1

αjTxj ⊗ Syj .

I Then it is well known that T ⊗ S ∈ L(H1 ⊗H2).
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Tensor products of ∞-complex symmetric operators

I Since T ⊗ S = (T ⊗ I )(I ⊗ S) = (I ⊗ S)(T ⊗ I ) and
T ⊗ I = ⊕∞n T , it is clear that an operator T is an m-complex
symmetric operator with conjugation C if and only if T ⊗ I
and I ⊗ T are m-complex symmetric operators with
conjugation C .

I We replace the notation ∆m(T ;C ) with ∆m(T ) as follows if
necessary;

∆m(T ;C ) =
m∑
j=0

(−1)m−j
(
m

j

)
T ∗jCTm−jC .
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Tensor products of ∞-complex symmetric operators

I Similarly, for conjugations C and D on H, we define C ⊗D on
H⊗H by

(C ⊗ D)(
n∑

j=1

αjxj ⊗ yj) =
n∑

j=1

αjCxj ⊗ Dyj .

I Then C ⊗D is a conjugation on H⊗H (see Lemma 3.2.15 or
[GP, Lemma 6]).
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Lemma 2.3.15 [2015, Chō, Lee, and Motoyoshi]

If C and D are conjugations on H, then C ⊗D is a conjugation on
H⊗H.

Lemma 2.3.16
Let T and S be m-complex symmetric and n-complex symmetric
with conjugation C , respectively. If T commutes with S and
S∗(CTC ) = (CTC )S∗, then TS is (m + n − 1)-complex symmetric
with conjugation C .

Theorem 2.3.17
Let T and S be an m-complex symmetric operator and n-complex
symmetric operator with conjugations C and D, respectively. Then
T ⊗ S is an (m + n − 1)-complex symmetric operator with
conjugation C ⊗ D.
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∞-Complex symmetric operators

Tensor products of ∞-complex symmetric operators

I T ∈ L(H) is called a 2-normal operator if T is unitarily
equivalent to an operator matrix of the form(
N1 N2

N3 N4

)
∈ L(H⊕H) where Ni are mutually commuting

normal operators for i = 1, 2, 3, 4.

Corollary 2.3.18

If T is an m-complex symmetric operator with a conjugation C
and S is a 2-normal operator with TS = ST , then T ⊗ U∗NU is
an m-complex symmetric operator where S = U∗NU with

N =

(
N1 N2

N3 N4

)
and a unitary operator U.
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∞-Complex symmetric operators

Tensor products of ∞-complex symmetric operators

Example 2.3.19

Let C be a conjugation given by C (z1, z2, z3) = (z1, z2, z3) on C3.

If N is normal and T =

0 1 0
0 0 2
0 0 0

 on C3 with TN = NT , then

T is a 5-complex symmetric operator with conjugation C from

[CKL]. Hence T ⊗ N =

0 N 0
0 0 2N
0 0 0

 is 5-complex symmetric

from Theorem 2.3.17.
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∞-Complex symmetric operators

Tensor products of ∞-complex symmetric operators

Lemma 2.3.20
Let T and S be ∞-complex symmetric operators with conjugation
C . Assume that TS = ST and S∗(CTC ) = (CTC )S∗. Then TS is
an ∞-complex symmetric operator with conjugation C .

Theorem 2.3.21
Let T and S be ∞-complex symmetric operators with conjugations
C and D, respectively. Then T ⊗ S is an ∞-complex symmetric
operator with conjugation C ⊗ D.

Corollary 2.3.22

Let T and S be ∞-complex symmetric operators with conjugations
C and D, respectively. Then (T ⊗ S)∗ has the property (β) if and
only if T ⊗ S is decomposable.
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CSOs and their applications

3. Complex symmetric operators and
their applications
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Complex symmetric Toeplitz operators on the Hardy space

3.1. Complex symmetric Toeplitz
operators on the Hardy space

KL Eungil Ko and Ji Eun Lee, On complex symmetric Toeplitz
operators, J. Math. Anal. Appl. 434(2016), 20-34.



Complex symmetric operators and their applications

Lecture 3. Complex symmetric operators and their applications
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Hardy space

I L2 := L2(∂D) is the usual Lebesque space on the unit circle
∂D.

I L∞ is the Banach space consisting of all essentially bounded
functions on ∂D.

I {zn : n = 0,±1,±2,±3, · · · } is an orthonormal basis for L2.

I The Hilbert Hardy space, denoted by H2, consists of all
analytic functions f on D with power series representation
f (z) =

∑∞
n=0 anz

n and
∑∞

n=0 |an|2 <∞, or equivalently, with

sup
0<r<1

( 1

2π

∫ 2π

0
|f (re iθ)|2dθ

)
<∞.

I H2 = span{zn : n = 0, 1, 2, 3, · · · }.
I H∞ is the space of bounded analytic functions on D.
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Toeplitz operators

Definition 3.1.1
For any ϕ ∈ L∞, the Toeplitz operator Tϕ : H2 → H2 is defined by
the formula

Tϕf = P(ϕf ), f ∈ H2

where P denotes the orthogonal projection of L2 onto H2.

I Note that Tϕ is bounded if and only if ϕ ∈ L∞ and
‖Tϕ‖ = ‖ϕ‖∞.

I Tϕ is a Toeplitz operator if and only if S∗TϕS = Tϕ where S
is the unilateral shift on H2, i.e., Sf (z) = zf (z) for f ∈ H2.

I Tϕ is called analytic if ϕ ∈ H∞, i.e., ϕ is a bounded analytic
function on the unit disc D

I Tϕ is called coanalytic if ϕ ∈ H∞ where ϕ denotes the
complex conjugate of ϕ.
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Complex symmetric Toeplitz operators on the Hardy space

Complex symmetric Toeplitz operators

(1963-64), A. Brown and P. Halmos

Tϕ is normal if and only if ϕ = α + βρ where ρ is a real valued
function in L∞ and α, β ∈ C.

(2006), S. R. Garcia and M. Putinar

Truncated Toeplitz operators (i.e.,
Au
ϕf = Pu(ϕf ),Pu : H2 → Ku := H2 	 uH2) are CSOs.

I K. Guo and S. Zhu ([GZ]) have raised the following question.

I Question Characterize a complex symmetric Toeplitz
operator on the Hardy space H2 of the unit disk.

GZ K. Guo and S. Zhu, A canonical decomposition of complex
symmetric operators, J. Oper. Theory, 72(2014), 529-547.
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Complex symmetric Toeplitz operators

I For u ∈ H2 with u(z) =
∑∞

n=0 anz
n, we define the function ũ

on the boundary of D by ũ(e iθ) :=
∑∞

n=0 ane
inθ.

I A function u ∈ H2 is called inner if |ũ(e iθ)| = 1 for almost all
θ.

Theorem 3.1.2
For ϕ ∈ L∞, let Tϕ be a complex symmetric operator on H2. If Tϕ
is analytic or coanalytic, then ϕ is either identically zero on D or a
nonzero constant function on D.

Corollary 3.1.3

If ϕ is a nonconstant inner function on D, then Tϕ is not a
complex symmetric operator with conjugation C .
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Complex symmetric Toeplitz operators on the Hardy space

Complex symmetric Toeplitz operators

Lemma 3.1.4
Let Cξ,θ : H2 → H2 be defined by Cξ,θf (z) = e iξf (e iθz) for all ξ
and θ. Then Cξ,θ is a conjugation on H2. Moreover, Cξ,θ and C

ξ̃,θ̃

are unitarily equivalent where (ξ̃, θ̃) satisfies the equation
ξ̃ − k θ̃ = −ξ + kθ − 2nπ for every k ∈ N and n ∈ Z.
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Complex symmetric Toeplitz operators

I Put ϕ+(z) =
∑∞

n=1 ϕ̂(n)zn, ϕ−(z) =
∑∞

n=1 ϕ̂(−n)zn, and
ϕ0(z) = ϕ̂(0)e0. Hence ϕ = ϕ+ + ϕ0 + ϕ−.

Theorem 3.1.5
For any ϕ ∈ L∞, let Tϕ be a Toeplitz operator on H2 and let ϕ̂(n)
be the nth Fourier coefficient of ϕ. Then the following assertions
are equivalent:
(i) Tϕ is complex symmetric with the conjugation Cξ,θ.
(ii) ϕ̂(−n) = ϕ̂(n)λn for all n ∈ Z with |λ| = 1.
(iii) ϕ(z) = ϕ0 +

∑∞
n=1 ϕ̂(n)(zn + λnzn) with |λ| = 1.

(iv) ϕ(z) = ϕ+(z) + ϕ0 + ϕ+(e iθz) for ϕ+ ∈ zH2 and some θ.
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Complex symmetric Toeplitz operators
Put C00f (z) = f (z) and C0,πf (z) = f (−z) for f ∈ H2.

Corollary 3.1.6

For ϕ(z) =
∑∞

n=−∞ ϕ̂(n)zn ∈ L∞, let Tϕ be a Toeplitz operator
on H2. Then the following statements hold:
(i) Tϕ is complex symmetric with the conjugation C0,0

⇔ ϕ(z) = ϕ0 + 2
∞∑
n=1

ϕ̂(n)Re{zn}.

(ii) Tϕ is complex symmetric with the conjugation C0,π

⇔ ϕ(z) = ϕ0 + 2
∞∑
k=1

ϕ̂(2k)Re{z2k}+ 2i
∞∑
k=1

ϕ̂(2k − 1)Im{z2k−1}.
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Complex symmetric Toeplitz operators

Corollary 3.1.7

Under the same hypotheses as in Theorem 3.1.5, the following
assertions hold.
(i) If Tϕ is a complex symmetric operator with both conjugations
C0,0 and C0,π, then ϕ̂(2k − 1) = 0 for all positive integer k .
(ii) If ϕ(z) = φ(z) + α + φ(z) and ψ(z) = φ(z) + β + φ(−z) for
φ ∈ zH2 and α, β ∈ C, then Tϕ and Tψ are complex symmetric
operators on H2.
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Complex symmetric Toeplitz matrices

We know from Corollary 3.1.6 that the matrices (aij) and (ãij) for
complex symmetric operators Tϕ with conjugation C0,0 and C0,π

with respect to the basis {zn : n = 0, 1, 2, · · · } are given by

(aij) =



a0 a1 a2 a3 · · · · · ·

a1 a0 a1 a2
. . . · · ·

a2 a1 a0 a1
. . .

. . .

a3 a2 a1 a0
. . .

. . .

· · · . . .
. . .

. . .
. . .

. . .

· · · · · · . . .
. . .

. . .
. . .


,
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Complex symmetric Toeplitz matrices

(ãij) =



a0 −a1 a2 −a3 · · · · · ·

a1 a0 −a1 a2
. . . · · ·

a2 a1 a0 −a1
. . .

. . .

a3 a2 a1 a0
. . .

. . .

· · · . . .
. . .

. . .
. . .

. . .

· · · · · · . . .
. . .

. . .
. . .


,

where ak = ϕ̂(k) for positive integer k . In this case, (aij)
t = (aij)

and (ãij)
t 6= (ãij) where t denotes the transpose.
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Complex symmetric Toeplitz operators

Corollary 3.1.8

If (aij) and (ãij) are matrices in the previous notes, then the
following properties hold.
(i) (aij) is self-adjoint if and only if ak = ak for all k = 0, 1, 2, · · · .
(ii) (ãij) is self-adjoint if and only if a2k = a2k and a2k+1 = −a2k+1

for all k = 0, 1, 2, · · · .
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Complex symmetric normal Toeplitz operators

I Tϕ is normal if and only if ϕ = α + βρ where ρ is a real
valued function in L∞ and α, β ∈ C.

I Put ϕ+(z) =
∑∞

n=1 ϕ̂(n)en, ϕ−(z) =
∑∞

n=1 ϕ̂(−n)en, and
ϕ0(z) = ϕ̂(0)e0.

Theorem 3.1.9
Let ϕ be in L∞ such that ϕ = ϕ+ + ϕ0 + ϕ− where ϕ+ and ϕ−
are in zH2. If Tϕ is complex symmetric with the conjugation Cξ,θ,

then Tϕ is normal if and only if ϕ̂(n) = e i(ζ+nθ)ϕ̂(n) for all positive
integer n and for some ζ, θ.
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Complex symmetric normal Toeplitz operators

Corollary 3.1.10

Let ϕ be in L∞ such that ϕ = ϕ+ + ϕ0 + ϕ−. Then the following
statements hold:
(i) If Tϕ is complex symmetric with the conjugation C0,0, then Tϕ
is normal if and only if

ϕ(z) = ϕ0 + 2e−i
θ
2 Re{

∑∞
n=1 e

i θ
2 ϕ̂(n)Re(zn)} for some θ.

(ii) If Tϕ is complex symmetric with the conjugation C0,π, then Tϕ
is normal if and only if a symbol function ϕ has the form;

ϕ(z) = ϕ0 + 2e−i
θ
2 Re{

∞∑
k=1

e i
θ
2 ϕ̂(2k)Re(z2k)}

+2ie−i
θ
2 Im{

∞∑
k=1

e i
θ
2 ϕ̂(2k − 1)Im(z2k−1)}.
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Complex symmetric normal Toeplitz operators

Corollary 3.1.11

For ϕ(z) =
∑∞

n=−∞ ϕ̂(n)zn ∈ L∞, let Tϕ be a Toeplitz operator
on H2. If Tϕ is complex symmetric with the conjugation Cξ,θ, then

Tϕ is unitary if and only if for some ζ, ϕ̂(n) = e i(ζ+nθ)ϕ̂(n) for all
positive integers n and

∞∑
n=−k

ϕ̂(n)ϕ̂(n + k − l) =
∞∑

n=−k
ϕ̂(−n)ϕ̂(−(n + k − l)) =

{
1 if k = l

0 if k 6= l

for all positive integers l , k .
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CSO and nonnormal Toeplitz operators

Corollary 3.1.12

For any ϕ ∈ L∞, let Tϕ be a Toeplitz operator on H2 and let ϕ̂(n)
be the nth Fourier coefficient of ϕ. Then the following statements
hold.
(i) If ϕ̂(−n) = ϕ̂(n) for all n ≥ 1 and ϕ̂(k) 6= e iθϕ̂(k) for some
positive integer k and for all θ, then Tϕ is nonnormal and complex
symmetric.
(ii) If ϕ̂(−n) = ϕ̂(n)(−1)n for all n ≥ 1 and (−1)nϕ̂(k) 6= e iθϕ̂(k)
for some positive integer k and for all θ, then Tϕ is nonnormal and
complex symmetric.
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A general conjugation

Theorem 3.1.13
Let ϕ be in L∞ such that ϕ = ϕ+ + ϕ0 + ϕ− where ϕ+ and ϕ−
are in zH2. If C is a conjugation on H2 and Tϕ is a complex
symmetric operator with conjugation C , then

k−1∑
i=0

[ϕ̂(k−i)ai−ϕ̂(−(k − i))ãkγk ] =
∞∑
n=1

[ϕ̂(n)ãn+kγk−an+k ϕ̂(−n)]

(18)
for all k where ak = 〈f , zk〉, ãk = 〈Cf , zk〉, and γk = 〈Cz j , zk〉 for
all f ∈ H2.



Complex symmetric operators and their applications

Lecture 3. Complex symmetric operators and their applications
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A general conjugation

Corollary 3.1.14

Under the same hypotheses as in Theorem 3.1.13, if Tϕ is a
complex symmetric operator with the conjugation Cξ,θ, then

k−1∑
i=0

[λk−i ϕ̂(−(k − i))− ϕ̂(k − i)]ai =
∞∑
n=1

[ϕ̂(−n)− λnϕ̂(n)]an+k

(19)
where |λ| = 1.
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A general conjugation

Remark that if Cξ,θ = C0,0 in Corollary 3.1.14, then ãj = ai ,

α̃k =
∑∞

n=1 an+k ϕ̂(n), and β̃k =
∑k−1

i=0 ϕ̂(−(k − i))ai . An
equation (18) implies that

k−1∑
i=0

[ϕ̂(−(k − i))− ϕ̂(k − i)]ai =
∞∑
n=1

[ϕ̂(−n)− ϕ̂(n)]an+k . (20)

Since Tϕ is complex symmetric with the conjugation C0,0, by
Corollary 3.1.14, we know that the equation (20) always holds.
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A general conjugation

Example 3.1.15

If Tz is a unilateral shift on H2, then Tz is not a complex
symmetric Toeplitz operator with conjugation C0,0. Indeed, since
ϕ(z) = z , it follows that ϕ̂(1) = 1 and ϕ̂(n) = 0 for all n 6= 1.
Then we obtain from (20) that

k−1∑
i=0

[ϕ̂(−(k − i))− ϕ̂(k − i)]ai −
∞∑
n=1

[ϕ̂(−n)− ϕ̂(n)]an+k

= [ϕ̂(−(k))− ϕ̂(k)]a0 + · · ·+ [ϕ̂(−1)− ϕ̂(1)]ak−1

− [ϕ̂(−1)− ϕ̂(1)]a1+k − [ϕ̂(−2)− ϕ̂(2)]a2+k − · · ·
= ϕ̂(1)(ak+1 − ak−1) 6= 0

for some k . Thus (20) does not hold.
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CSO Toeplitz operators with a finite symbol

Theorem 3.1.16
Let ϕ(z) =

∑N
n=−m anz

n where N ≥ m > 0 and an ∈ C with
nonzero a−m, aN . Then Tϕ is complex symmetric with the
conjugation Cξ,θ if and only if m = N and a−n = ane

inθ for all
n = 1, 2, · · · ,N and some θ. In particular, in this case, Tϕ is
normal if and only if a−m = ame

imθ and amak = e i(m−k)θamak for
all k = 1, 2, · · · ,m − 1.



Complex symmetric operators and their applications

Lecture 3. Complex symmetric operators and their applications
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CSO Toeplitz operators with a finite symbol

Corollary 3.1.17

Let ϕ(z) =
∑m

n=−m anz
n for an ∈ C with nonzero a−m, am. If Tϕ

is complex symmetric with the conjugations C0,0 and C0,π and it is
normal, then amak = amak when k + m is even, ak = 0 for
k = 2, 4, 6, · · · ,m − 1 when m is odd, or ak = 0 for
k = 1, 3, 5, · · · ,m − 1 when m is even.

Example 3.1.18

Let ϕ(z) = e iθ(3zn+1 + zn + zn + 3zn+1) for some θ. Then Tϕ is
complex symmetric and normal from Theorem 3.1.16.
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Example 3.1.19
Suppose that

ϕ(z) = iz3 + z + z + iz3 and ψ(z) = 2z2 + z + i − z + 2z2.

Then the matrices for Toeplitz operators Tϕ and Tψ with respect
to the basis B = {zn : n = 0, 1, 2, · · · } are given by

[Tϕ]B =



0 1 0 i 0
. . .

1 0 1 0 i
. . .

0 1 0 1 0
. . .

i 0 1 0 1
. . .

0 i 0 1 0
. . .

. . .
. . .

. . .
. . .

. . .
. . .


,



Complex symmetric operators and their applications

Lecture 3. Complex symmetric operators and their applications

Complex symmetric Toeplitz operators on the Hardy space

Example

[Tψ]B =



i −1 2 0 0
. . .

1 i −1 2 0
. . .

2 1 i −1 2
. . .

0 2 1 i −1
. . .

0 0 2 1 i
. . .

. . .
. . .

. . .
. . .

. . .
. . .


.

Hence, by Theorem 3.1.16, Tϕ and Tψ are complex symmetric
with respect to the conjugations C0,0 and C0,π, respectively. But,
since a3a−1 − a−3a1 and a2a−1 − a−2a1 are nonzero, both Tϕ and
Tψ are not normal from Theorem 3.1.16 or [FL].
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Complex symmetric Toeplitz operators on the weighted
Bergman space

3.2. Complex symmetric Toeplitz
operators on the weighted Bergman

space

KLL Eungil Ko, Ji Eun Lee, and Jongrak Lee, Complex symmetric
Toeplitz operators on the weighted Bergmann space, preprint.
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Weighted Bergmann space
I For −1 < α <∞, the weighted Bergman space A2

α(D) is the
space of analytic functions in L2(D, dAα) where
dAα(z) = (α + 1)(1− |z |2)αdA(z).

I Here, L2(D, dAα) is a Hilbert space with the following inner
product

〈f , g〉 =

∫
D
f (z)g(z)dAα(z)

where f , g ∈ L2(D, dAα).
I For any nonnegative integer n, let

en(z) =

√
Γ(n + α + 2)

Γ(n + 1)Γ(α + 2)
zn (z ∈ D),

where Γ(s) is the usual Gamma function, i.e., Γ(s) = (s − 1)!.
Then {en} is an orthonormal basis for A2

α(D) ([HKZ]).
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Toeplitz operators on A2
α(D)

I For ϕ ∈ L∞(D), the Toeplitz operator Tϕ on A2
α(D) is defined

by
Tϕf := P(ϕ · f ).

where P is the orthogonal projection from L2(D, dAα) onto
A2
α(D).

I The reproducing kernel in A2
α(D) is given by

Kz(ω) =
1

(1− zω)α+2
,

for z , ω ∈ D. Thus we have

(Tϕf )(z) =

∫
D

ϕ(ω)f (ω)

(1− zω)α+2
dAα(ω),

for f ∈ A2
α(D) and ω ∈ D.
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Complex symmetric Toeplitz operators on the weighted Bergman space

Toeplitz operators on A2
α(D)

Basic properties of Toeplitz operators

Let f and g be bounded functions and α, β ∈ C. Then from the
definition of Toeplitz operator, we can easily check that
(i) Tαf +βg = αTf + βTg .
(ii) T ∗f = Tf .
(iii) If Tf = 0, then f = 0.
(iv) If f ∈ H∞(D), then TgTf = Tgf and Tf Tg = Tf g .

Question
Characterize a complex symmetric Toeplitz operator on the
weighted Bergman space A2

α(D).
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Complex symmetric Toeplitz operators

Proposition 3.2.1

Let C be a conjugation on A2
α(D). Suppose that Tϕ is complex

symmetric with the conjugation C. Then the following assertions
hold.
(i) If ϕ is not a constant function in L∞(D), then

ker(Tϕ − λI ) = ker(T ∗ϕ − λI ) = {0}

for some λ ∈ C.
(ii) If ϕ ∈ H∞(D) is not identically zero on D, then Tϕ is a
quasiaffinity, i.e., it has trivial kernel and dense range.
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Complex symmetric Toeplitz operators

Lemma 3.2.2
([AC] and [You]) Let ϕ be a bounded harmonic function on D.
Then the following statements are equivalent;
(i) Tϕ is normal.
(ii) There exists a nonzero pair (a, b) ∈ C2 such that aϕ+ bϕ is a
constant on D.
(iii) The set ϕ(D) lies on some line in C.

AC S. Axler and Z. Cuckovic, Commuting Toeplitz operators with
harmonic symbols, Int. Eq. Op. Th. 14 (1991), 1-12.

You A. Yousef, Two problems in the theory of Toeplitz operators
on the Bergman space, (2009), Theses and Dissertations.
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Theorem 3.2.3
Let Tϕ be complex symmetric with a conjugation C on A2

α(D).
Then the following statements hold;
(i) Assume that ψ is a bounded analytic functions and ϕ is a
bounded measurable function. If [Tψ,Tϕ] = 0 where
[R, S ] = RS − SR, then the set ϕ(D) lies on some line in C.
(ii) If ϕ ∈ L∞, then

P(ϕK̃λ) = ϕ(λ)K̃λ (21)

holds where K̃λ := CKλ and Kλ = 1
1−λz . In particular, if ϕ ∈ H∞,

then ϕ is a constant on D.
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Proposition 3.2.4

Let C be a conjugation on A2
α(D). Then the following statements

hold;
(i) The Parseval’s identity holds, i.e.,

∑∞
n=0 |〈f ,Cen〉|2 = ‖f ‖2

2 for
every f ∈ A2

α(D).
(ii) Then the set of functions

{Cen(z) :=

√
Γ(n + α + 2)

Γ(n + 1)Γ(α + 2)
Czn}

forms an orthonormal basis for A2
α(D).
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Lemma 3.2.5
([HLP]) For nonnegative integers n,m,

P(znzm) =

{
Γ(n+1)Γ(n−m+α+2)
Γ(n+α+2)Γ(n−m+1)z

n−m if n ≥ m;

0 if n < m.

HLP I. S. Hwang, J. Lee and S. W. Park, Hyponormal Toeplitz
operators with polynomial symbols on the weighted Bergman
spaces, J. Inequal. Appl. 2014, (2014) 8 pp.
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Theorem 3.2.6
Let ϕ be in L∞(D) such that

ϕ(z) =
∞∑
n=1

ϕ̂(−n)zn +
∞∑
n=0

ϕ̂(n)zn.

If C is a conjugation on A2
α(D), then Tϕ is a complex symmetric

operator with conjugation C if and only if ϕ̂(−k) = C ϕ̂(k) for all
k ∈ N ∪ {0}.
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Example 3.2.7

Let C be a conjugation on A2
α(D). If ϕ(z) = aCz + az for some

a ∈ C, then Tϕ is a complex symmetric operator on A2
α(D) from

Theorem 3.2.6.

Remark
We observe from Theorem 3.2.6 and [KL, Theorem 2.14] that the
necessary and sufficient conditions for the complex symmetric
Toeplitz operator Tϕ on A2

α(D) and on H2(T) are the same.
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I It is known from [CC] that if ϕ(z) = z2 + 2z , then Tϕ is not
hyponormal on the Hardy space H2(T), but Tϕ is hyponormal
on the Bergman space A2

α(D).

I Let ϕ(z) = z + z2. Then Tϕ is hyponormal on H2(T) but is
not hyponormal on A2

α(D).

I Hence, there is no relation between the hyponormality of Tϕ
on H2(T) and on A2

α(D).

CC Z. Cuckovi and R. E. Curto, A New Necessary Condition for
the Hyponormality of Toeplitz Operators on the Bergman
Space, preprint.
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Lemma 3.2.8
([CC], Theorem 4.2]) Let ϕ = αzn + βzm + γzp + δzq with
n < m, p < q, n −m = q − p and for nonzero α, β, γ, δ and ϕ+ ϕ
is a constant. Then Tϕ is normal if and only if ϕ is one of exactly
three types;
(i) ϕ = αzn − λαzn
(ii) ϕ = αzn + βzm − λ(αzn + βzm)
(iii) ϕ = βzm − λβzm.
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Lemma 3.2.9
Let ϕ(z) = g(z) + f (z), where

f (z) = amz
m + aNz

N and g(z) = a−mz
m + a−Nz

N (m < N).

Then Tϕ is normal on A2
α(D) if and only if |aN | = |a−N | and

amaN = a−ma−N .
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Lemma 3.2.10
[Cowen’s Theorem [Cow]] For ϕ ∈ L∞(T), write

E(ϕ) := {k ∈ H∞(T) : ‖k‖∞ ≤ 1 and ϕ− kϕ ∈ H∞(T)}.

Then Tϕ is hyponormal if and only if E(ϕ) is nonempty.

Cow C. C. Cowen, Hyponormal and subnormal Toeplitz operators,
Proc. Amer. Math. Soc. 103(1988), 809-812.
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Lemma 3.2.11
([KL-J]) Let ϕ(z) = g(z) + f (z), where

f (z) = amz
m + aNz

N and g(z) = a−mz
m + a−Nz

N .

If amaN = a−ma−N and |a−N | ≤ |aN |, then Tϕ on A2
α(D) is

hyponormal if and only if

|aN |2 − |a−N |2

(m + α + 1)(m + α + 2) · · · (N + α + 1)
≥ |a−m|2 − |am|2

(m + 1)(m + 2) · · ·N
.

(22)
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Theorem 3.2.12
Let ϕ(z) = g(z) + f (z), where

f (z) = amz
m + aNz

N and g(z) = a−mz
m + a−Nz

N (m < N).

If Tϕ is complex symmetric on A2
α(D), then the following

statements hold.
(i) Tϕ is hyponormal on A2

α(D).
(ii) Tϕ is hyponormal on H2(T).
(iii) Tϕ is normal on A2

α(D).
(iv) Tϕ is normal on H2(T).
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Corollary 3.2.13

Let ϕ(z) = g(z) + f (z), where

f (z) = amz
m + aNz

N and g(z) = a−mz
m + a−Nz

N .

If Tϕ is complex symmetric on A2
α(D), then Tϕ is hyponormal on

A2
α(D) if and only if E(ϕ) is nonempty where E(ϕ) is defined in

Lemma 3.2.10.
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Example 3.2.14

Let ϕ(z) = z2 + 2z . Then from [CC], Tϕ is not hyponormal on
H2(T), but is hyponormal in A2

α(D). Hence Tϕ is not complex
symmetric from Theorem 3.2.12. Similarly, if ψ(z) = z + z2, then
Tψ is not complex symmetric from Theorem 3.2.12.

Example 3.2.15

Let ϕ(z) = z2 + z + 1
2z + 2z2. Then by Lemma 3.2.10,

k(z) = 1
2 + 3

8z ∈ E(ϕ) and so Tϕ is hyponormal on H2(T), but by
Lemma 3.2.11, Tϕ is hyponormal in A2

α(D) if and only if α ≤ 5.
Therefore, for α > 5, Tϕ is not hyponormal and hence Tϕ is not
complex symmetric from Theorem 3.2.12.
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Complex symmetric Toeplitz operators with the special
conjugation

Lemma 3.2.16
For every µ and λ with |µ| = |λ| = 1, let Cµ,λ : A2

α(D)→ A2
α(D)

be given by
Cµ,λf (z) = µf (λz).

Then Cµ,λ is a conjugation on A2
α(D).

Lemma 3.2.17
Let ϕ be in L∞(D) such that
ϕ(z) =

∑∞
n=1 ϕ̂(−n)zn +

∑∞
n=0 ϕ̂(n)zn. Then the following

statements are equivalent:
(i) Tϕ on A2

α(D) is complex symmetric with the conjugation Cµ,λ.
(ii) ϕ̂(−n) = λnϕ̂(n) for all n ∈ N ∪ {0} and |λ| = 1.
(iii) Tϕ on H2 is complex symmetric with the conjugation Cµ,λ.
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Complex symmetric Toeplitz operators with the special
conjugation

We denote by ϕ+ and ϕ− as the positive and negative parts of ϕ,
respectively:

ϕ+(z) =
∞∑
n=1

ϕ̂(n)zn, ϕ−(z) =
∞∑
n=1

ϕ̂(−n)zn, and ϕ0(z) = ϕ̂(0).

Hence ϕ = ϕ+ + ϕ0 + ϕ−.

Theorem 3.2.18
Let ϕ ∈ L∞(D). If Tϕ is a Toeplitz operator on A2

α(D), then the
following statements are equivalent.
(i) Tϕ is complex symmetric with the conjugation Cµ,λ.
(ii) ϕ(z) = ϕ0 +

∑∞
n=1 ϕ̂(n)(zn + λnzn) with |λ| = 1.

(iii) ϕ(z) = ϕ+(z) + ϕ0 + ϕ+(λz).
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conjugation

Corollary 3.2.19

Let ϕ(z) = g(z) + f (z), where

f (z) = amz
m + aNz

N and g(z) = a−mz
m + a−Nz

N .

If Tϕ on A2
α(D) is complex symmetric with the conjugation Cµ,λ,

then Tϕ is normal.



Complex symmetric operators and their applications

Lecture 3. Complex symmetric operators and their applications

Complex symmetric Toeplitz operators on the weighted Bergman space

Complex symmetric Toeplitz operators with the special
conjugation

Put C1f (z) = f (z) and C2f (z) = f (−z) for all f ∈ A2
α(D). Then

C1 and C2 are clearly conjugations on A2
α(D).

Corollary 3.2.20

For any ϕ ∈ L∞, let Tϕ be a Toeplitz operator on A2
α(D). Then

the following statements hold.
(i) Tϕ is complex symmetric with the conjugation C1 if and only if

ϕ̂(−n) = ϕ̂(n) for all n ∈ Z.
(ii) Tϕ is complex symmetric with the conjugation C2 if and only if

ϕ̂(−n) = ϕ̂(n)(−1)n for all n ∈ N ∪ {0}.
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Complex symmetry Toeplitz operators with the special
conjugation

Proposition 3.2.21

If Tϕ on A2
α(D) is complex symmetric with the conjugation Cµ,λ,

then Tϕ is normal if and only if γλnϕ̂(n) = ϕ̂(n) = λnϕ̂(−n) for
all n ∈ N ∪ {0} with |λ| = |γ| = 1.
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conjugation

Remark

I The authors in [KL] gave the necessary and sufficient
condition for complex symmetric Toeplitz operators with
conjugation Cµ,λ in the Hardy space H2(T) as follows :

I For ϕ(z) ∈ L∞, ϕ(z) = ϕ+(z) + ϕ0 + ϕ+(e iθz) for ϕ+ ∈ zH2

for some θ.

I By Theorem 3.2.18, Tϕ is complex symmetric Toeplitz
operators with conjugation Cµ,λ on the Hardy space H2(T) if
and only if it is complex symmetric Toeplitz operators with
conjugation Cµ,λ on the weighted Bergman space A2

α(D).
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conjugation

I In Hardy space H2(T), znzm is equal to zm−n

I In the weighted Bergman space A2
α(D), znzm 6= zm−n since

z ∈ D.

Theorem 3.2.22
Let ϕ(z) = aznzm + bzsz t where a, b ∈ C and n −m = t − s.
Then Tϕ on A2

α(D) is complex symmetric with the conjugation
Cµ,λ if and only if s = m, t = n, and a = bλn−m.
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conjugation

Corollary 3.2.23

Let ϕ(z) = aznzm + bz` where n > m and a, b ∈ C with |a| 6= |b|.
Then Tϕ on A2

α(D) is never complex symmetric with the
conjugation Cµ,λ.

Example 3.2.24

Let ϕ(z) = z2z + az for a ∈ C with a 6= 1. By Corollary 3.2.23, Tϕ
is never complex symmetric with the conjugation Cµ,λ in the
weighted Bergman space A2

α(D) or H2(T).
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Thank you for your attention !

Happy new year 2020!!!
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