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Introduction

The goal of these lectures is to introduce the basic ideas of quantum groups
and their representation theory. Our motivation will come from the represen-
tation theory of Lie groups, particularly semisimple Lie groups, although we
won’t have time to delve very far into that enormous subject.

The lectures with be organized around the simple example of the group
SU(2) and its quantum analogue SUq(2), in which we can already see much
of the power and depth of unitary representation theory.
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Chapter 1

Compact quantum groups

1.1 Example: The discrete Fourier transform

Let’s start with some classical harmonic analysis. Consider the circle group:

T = S1 ∼= R/2πZ.

We’ll identify T with the set of complex numbers of modulus 1, and we’ll
write z : T→ C for the inclusion:

z(eiθ) = eiθ .

Definition 1.1.1. A trigonometric polynomial is a function of the form a =

∑k∈Z akzk with ak ∈ C and ak = 0 for all but finitely many k.

The set of trigonometric polynomials is a countable dimensional vector
space and also an algebra over C. In fact it is an algebra in two ways. Firstly,
we can equip it with the structure of pointwise multiplication,

a.b(eiθ) := a(eiθ)b(eiθ).

Secondly, we could equip it with the structure of convolution,

a ∗ b(eiθ) :=
∫ 2π

0
a(ei(θ−φ))b(eiφ)

dφ

2π
.

To distinguish the two structures we’ll use separate notation for the two.

Definition 1.1.2. We write

• A(T) for the algebra of trigonometric polynomials with pointwise mul-
tiplication,
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• D(T) for the algebra of trigonometric polynomials with the convolution
product.

Remark 1.1.3. In general in these notes, we will use A to denote algebras with
pointwise product and D for algebras with convolution product. The letter D
is chosen to suggest smooth ’distributions’ or ‘densities’ (see below).

Basic Fourier theory says that both these algebras can be understood in
terms of the sequence of Fourier coefficients â = (âk)k∈Z of a trigonometric
polynomial a. Let us write

C[Z] = {(ck)k∈Z | ck ∈ C and ck = 0 for all but finitely many k ∈ Z}.

Again, this is a countable dimensional vector space which can be equipped
with two different algebra structures, namely pointwise multiplication or con-
volution. Again, we distinguish these with separate notation:

• A(Z) denotes the space C[Z] equipped with pointwise multiplication,
so that

(c.d)k = ck.dk

• D(Z) denotes the space C[Z] equipped with convolution product,

(c ∗ d)k = ∑
j∈Z

ck−jdj.

Theorem 1.1.4 (Fourier transform for trigonometric polynomials). The Fourier
transform

F : ∑
k∈Z

akzk 7→ (ak)k∈Z

is an isomorphism of algebras

F : A(T)
∼=→ D(Z),

and also of algebras
F : D(T)

∼=→ A(Z).

Theorem 1.1.4 is purely algebraic. It can be extended to a result in func-
tional analysis in many different ways. For instance, the Fourier transform
F : A(T) → D(Z) extends to the following isomorphisms of topological
vector spaces and topological algebras:

L2(T) ∼= `2(Z) (These are not algebras)

C∞(T) ∼= S(Z) := {(ak)k∈Z | for every n ∈N, the sequence (knak)k∈Z is bounded}
(Elements of S(Z) are sequences of rapid decay)

A(T) ∼= `1(Z) (A(T) is the Fourier algebra of T)

C(T) ∼= C∗(Z) (C∗(Z) is the C∗-algebra of Z)

L∞(T) ∼= vN(Z) (vN(Z) is the von Neumann algebra of Z)
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and many others. All of the topological algebras on the left are the com-
pletions of the dense subalgebra A(T) with respect to some locally convex
topology. In every case, the proof of the isomorphism starts with Theorem
1.1.4.

The groups T and Z are called Pontryagin duals of one another. One of the
goals of these lecture notes will be to generalize Pontryagin duality as far as
we can.

Consider, for instance, the special unitary group

SU(N) = {g ∈ Mn(C) | g∗g = I and Det(g) = 1}

It is a compact Lie group. We denote its Haar measure by µ.

Let (ei) be the standard orthonormal basis for CN . Consider the matrix
coefficient functions

uij = 〈ei| • |ej〉 : SU(N)→ C; g 7→ gij := 〈ei, gej〉.

These are continuous functions on SU(N). Inside the space of continuous
functions C(SU(N)), we have the subspace of polynomial functions in the
matrix coefficients uij. This subspace is closed under both pointwise multipli-
cation,

a.b(g) := a(g)b(g)

and convolution,
a ∗ b(g) :=

∫
G

a(gh−1)b(h) dµ(h).

Thus, we again have two possible algebra structures on this dense subspace,
which we denote by A(SU(N)) and D(SU(N)), respectively.

Note though, that since SU(N) is not abelian, the algebra D(SU(N)) is not
commutative. Therefore, there is no hope of finding an algebra isomorphism
D(SU(N)) ∼= A(Ĝ) for some algebra of functions on a Pontryagin dual group
Ĝ. Instead, the Pontryagin dual Ĝ will be, by definition, a quantum group.

1.2 Distributions

To put the above example into a general context, it is better to see the algebras
D(T) and D(Z) as algebras of distributions. We begin by recalling some
definitions.

Let M be a smooth manifold. We write C∞(M) for the space of smooth C-
valued functions on M, and C∞

c (M) for the subspace of compactly supported
smooth functions. These have natural locally convex vector space topologies;
see for instance [Fri98] or [Trè67].
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A compactly supported distribution on M is a continuous linear functional

u : C∞(M)→ C.

The space of compactly supported distributions on M is denoted E ′(M). We
thus get a bilinear pairing:

( , ) : E ′(M)× C∞(M)→ C, (u, f ) = u( f ).

Example 1.2.1. Let M = G be a Lie group, and let µ be the left-invariant
Haar measure on G. Associated to any compactly supported smooth function
f ∈ C∞

c (G) there is a compactly supported distribution f µ ∈ E ′(G) defined
by

( f µ, a) :=
∫

M
f (x)a(x) dµ(x).

In this way, we get a continuous embedding of C∞
c (G) as a dense subspace

of E ′(G). Distributions of the form f µ are called compactly supported smooth
densities.

We will denote the space of compactly supported smooth densities on G
by C∞

c (G; |Ω1|). It is isomorphic to C∞
c (G) as a space, although the topology

of C∞
c (G) does not agree with the topology of C∞

c (G; |Ω1|) as a subspace of
E ′(G). The notation C∞

c (G; |Ω1|) comes from the fact that the smooth densities
on G can be seen as the space of sections of a certain canonical line bundle
|Ω1| over G called the bundle of densities, or 1-densities more explicitly. We
won’t need this description.

It’s common in the literature to identify the spaces C∞
c (G) and C∞

c (G; |Ω1|),
but it can be extremely helpful to maintain a distinction. For instance, they
have opposite functoriality (see below).

Example 1.2.2. We don’t exclude the possibility that M is a 0-dimensional
manifold, i.e., a discrete space. In this case, every function is smooth, so that

C∞(M) = {a : M→ C},
C∞

c (M) = {a : M→ C with finite support}.

If µ denotes counting measure on a discrete group G, then the analogue of
the construction from Example 1.2.1 gives the pairing

( f µ, a) = ∑
x∈M

f (x)a(x),

for f ∈ C∞
c (G) and a ∈ C∞(G).

Smooth functions are contravariant. Specifically, if ϕ : M→ N is a smooth
map then we can pull back smooth functions via ϕ,

ϕ∗ : C∞(N)→ C∞(M); ϕ∗ f = f ◦ ϕ.
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Compactly supported distributions are covariant, and the push-forward map
ϕ∗ : E ′(M)→ E ′(N) is defined by duality:

(ϕ∗u, a) := (u, ϕ∗a),

for u ∈ E ′(M), a ∈ C∞(N).

We finish this section with a quick reminder about tensor products of func-
tion spaces. This part will be light on details.

If M is a finite set, and A(M) denotes the set of all complex valued func-
tions on M, then there is a canonical isomorphism

A(M)⊗A(M) ∼= A(M×M),

such that ( f ⊗ g)(x, y) = f (x)g(y). If M is a manifold then this formula
gives an embedding of C∞

c (M)⊗ C∞
c (M) into C∞

c (M) which is dense but not
surjective. To get an isomorphism, we need to use a completed tensor product.
The usual choice is the projective tensor product, see [Trè67], which we will
denote by ⊗̄. Similar statements are possible for the spaces of distributions
and smooth densities, with appropriate completed tensor products:

C∞
c (M)⊗̄C∞

c (M) ∼= C∞
c (M×M),

C∞
c (M; |Ω1|)⊗̄C∞

c (M; |Ω1|) ∼= C∞
c (M×M; |Ω1|),

E ′(M)⊗̄E ′(M) ∼= E ′(M×M).

In fact, we won’t make much use of these topological tensor products,
since very shortly we’ll restrict our attention to certain countable dimensional
dense subalgebras, for which the algebraic tensor product will suffice for our
needs.

1.3 Algebras associated to Lie groups

Let G be a Lie group. Let us write, temporarily,

A∞(G) := C∞
c (G),

D∞(G) := C∞
c (G; |Ω1|).

We’ll change this notation shortly. Again, we recall that these are isomor-
phic as vector spaces, but equipped with different algebra structures. If we
equip both with the standard locally convex topology on C∞

c (G), then they
are topological algebras.

Let us examine the algebra structures from a functorial point of view. The
pointwise product on A∞(G) is given by the pull-back by the diagonal em-
bedding

Diag : G → G× G; Diag(x) = (x, x).
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That is, for all a, b ∈ A∞(G),

a.b = Diag∗(a⊗ b).

On the other hand, the convolution product on D∞(G) is the push-forward
by the group law

Mult : G× G → G; Mult(x, y) = xy.

That is, for all u, v ∈ C∞
c (G; |ω1|),

u ∗ v = Mult∗(u⊗ v).

Exercise 1.3.1. Check these formulas.

Both the pointwise multiplication and the convolution are associative prod-
ucts. For the convolution on D∞(G), this follows immediately from the asso-
ciativity of the group law:

Mult ◦(Mult× id) = Mult ◦(id×Mult) : G× G× G → G.

For the pointwise multiplication on A∞(G), this follows from the coassociativ-
ity of the diagonal embedding:

(Diag× id) ◦Diag = (id×Diag) ◦Diag : G → G× G× G.

This symmetry between the maps Mult : G× G → G and Diag : G → G×
G is striking, and this is the fundamental observation underlying quantum
groups. The notions of associativity and coassociativity can both be expressed
by a commuting diagram of maps, and the difference between the two is just
the direction of the arrows. This will be true of many dual notions to come:
algebras and coalgebras, units and counits, etc.

We should observe, though, that there is one important way in which this
symmetry fails for the maps Diag and Mult on a classical group. Let us write
S for the flip map

S : G× G → G× G; (x, y) 7→ (y, x).

Then the diagonal embedding is always cocommutative, in the sense that

S ◦Diag = Diag .

But the multiplication map is not always commutative. Indeed, we have

Mult ◦S = Mult,

only if the group G is abelian. The theory of quantum groups allows us to
rectify this asymmetry.
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1.4 Hopf algebras

Given that the algebra maps on A∞(G) and D∞(G) are defined by Diag∗

and Mult∗, respectively, it becomes clear that these spaces also both admit a
second, less well-known, algebraic structure, called a coproduct. Morally, we
would like to say that we have coproducts

∆ = Mult∗ :A∞(G)→ A∞(G)⊗̄A∞(G),

∆̂ = Diag∗ :D∞(G)→ D∞(G)⊗̄D∞(G).

For a general Lie group this is not quite right. For instance on a non-
compact group G, the pull back Mult∗ a of a compactly supported function
a ∈ C∞

c (M) is not compactly supported, so that Mult∗ maps A∞(G) into
C∞(G × G), not into A∞(G)⊗̄A∞(G) = C∞

c (G × G). Likewise, for any Lie
group of dimension greater than 0, the push-forward of a compactly sup-
ported smooth density by the diagonal embedding is not smooth, so that
Diag∗ maps D∞(G) to E ′(G× G).

We will avoid this technical issue almost entirely, by restricting our atten-
tion to finite and compact quantum groups, where the problem won’t arise.
But, for the sake of completeness, let us remark that there are analogues of
the definitions to follow which can take account of this problem. Specifically,
we can observe that C∞(G × G) and E ′(G × G) are multiplier algebras of
C∞

c (G× G) and C∞(G× G; |Ω1|), respectively. Taking this into account leads
to the notion of a bornological quantum group [Voi08], generalizing the notion
of algebraic quantum groups of Van Daele [VD98]. Another approach, is to use
C∗ and von Neumann algebras, giving the notion of locally compact quantum
group of Kustermans and Vaes [KV00].

To return to the purely algebraic situation, the following definition will
underpin the entire theory of quantum groups.

Definition 1.4.1. A Hopf algebra (over C) is a complex vector spaceA equipped
with linear maps as follows:

• Product m : A⊗A → A, written as usual as a⊗ b 7→ ab.

• Unit η : C→ A, determined equivalently by a unit element 1 := η(1).

• Coproduct ∆ : A → A⊗A, denoted sometimes by the Sweedler nota-
tion a 7→ ∑ a(1) ⊗ a(2), often with the summation suppressed.

• Counit ε : A → C.

• Antipode (or coinverse) S : A → A.

These must satisfy the following axioms:

• (A, m, 1) is a unital algebra.
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• (A, ∆, ε) is a counital coalgebra. This means ∆ is coassociative,

(∆⊗ id)∆ = (∆⊗ id)∆,

and the counit satisfies

(id⊗ε)∆ = id = (ε⊗ id)∆,

under the natural identification A⊗C = A = C⊗A.

• (A, m, 1, ∆, ε) is a bialgebra. This means the coalgebra maps are unital
algebra homomorphisms,

∆(ab) = a(1)b(1) ⊗ a(2)b(2),

ε(ab) = ε(a)ε(b),

∆(1) = 1⊗ 1.

Equivalently, the algebra maps are counital coalgebra homomorphisms.

• The antipode condition.

m ◦ (S⊗ id) ◦ ∆(a) = ε(a)1 = m ◦ (id⊗S) ◦ ∆(a),

for all a ∈ A.

It follows automatically that S is an algebra antihomomorphism and a
coalgebra antihomomorphism:

S(ab) = S(b)S(a),

(S× S)(∆(a)) = ∆cop(S(a)),

where ∆cop = S ◦ ∆.

We note that the axioms of a counital coalgebra are obtained from those of
a unital algebra by drawing the commuting diagrams representing the algebra
axioms in terms of the maps m and η, and reversing all the arrows.

To illustrate this definition, consider the two Hopf algebras naturally asso-
ciated to a finite group.

Example 1.4.2. Let G be a finite group and let A(G) = C(G) be the space of
all complex valued functions on G. Then A(G) is a Hopf algebra with:

ab(g) = a(g)b(g), 1(g) = 1,

∆a(g, h) = a(gh), ε(a) = a(e),

(Sa)(g) = a(g−1),

for a, b ∈ A(G), g, h ∈ G.
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Example 1.4.3. Still with G a finite group, let D(G) = C[G] be the vector space
of with basis (δg)g∈G. It is a Hopf algebra with operations

δg ∗ δh = δgh, 1̂ = δe,

∆̂(δg) = δg ⊗ δg, ε̂(δg) = 1,

S(δg) = δg−1 .

Of course, there is an identification of C[G] with C(G) by sending a func-
tion u : G → C to the element u = ∑g∈G u(g)δg. In this picture, the above
operations become,

u ∗ v(g) = ∑
h∈G

u(gh−1)v(h), 1̂(g) =

{
1, if g = e,
0, else,

,

∆̂u(g, h) =

{
u(g), if g = h,
0, else,

ε̂(a) = ∑
g∈G

u(g),

(Ŝu)(g) = u(g−1),

for u, v ∈ A(G), g, h ∈ G.

Exercise 1.4.4. Consider the maps Mult : G × G → G, Diag : G → G × G,
e : {e} → G the inclusion of the trivial subgroup, π : G → {e} the quotient
to the trivial subgroup, and ι : G → G the group inverse. Show that the Hopf
algebra operations on A(G) are given by

m = Diag∗, η = π∗, ∆ = Mult∗, ε = e∗, S = ι∗,

and those on D(G) are

m̂ = Mult∗, η̂ = e∗, ∆̂ = Diag∗, ε̂ = π∗, Ŝ = ι∗.

Deduce the veracity of the Hopf algebra axioms for A(G) and D(G).

1.5 ∗-structures and Haar integrals

Recall that the Diagonal embedding Diag : G → G× G is always a cocommu-
tative map for a classical finite group, so that the product on A(G) is always
abelian. Following Connes’ philosophy, this suggests that a non-abelian Hopf
algebra might provide a reasonable notion of ’group’ in noncommutative ge-
ometry. However, noncommutative geometry really relies on ∗-algebras, so
we need to add a little more structure.

Definition 1.5.1. A ∗-Hopf algebra is a Hopf algebra A equipped with an
antilinear involution a 7→ a∗ which is an algebra anti-automorphism and coal-
gebra automorphism. That is, for all a, b ∈ A,

(ab)∗ = b∗a∗

and
∆(a∗) = ∆(a)∗ = ∑ a∗(1) ⊗ a∗(2).
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Example 1.5.2. Let G be a compact group. The Hopf algebra A(G) of Ex-
ample 1.4.2 is a ∗-Hopf algebra if equipped with the involution of pointwise
conjugation,

a∗(g) = a(g), (g ∈ G).

Example 1.5.3. The convolution algebra D(G) of Example 1.4.3 is a ∗-Hopf
algebra with involution determined by

δ∗g = δg−1 ,

for all g ∈ G.

Proposition 1.5.4. If A is a Hopf ∗-algebra then

1∗ = 1, ε(a∗) = ε(a), S(S(a∗)∗) = a,

for all a ∈ A. In particular, the antipode S is invertible with S−1 = ∗ ◦ S ◦ ∗.

As a final piece of structure, we need an analogue of the Haar measure.

Definition 1.5.5. A ∗-Hopf algebra A is called a compact quantum group algebra
if it is equipped with a linear functional φ, called the Haar state, satisfying

Positivity: φ(a∗a) ≥ 0 for all a ∈ A,

Faithfulness: φ(a∗a) = 0 iff a = 0.

Left-invariance: (id⊗φ)∆(a) = φ(a)1 for all a ∈ A.

When A is finite dimensional, we call A a finite quantum group algebra.

Example 1.5.6. Let G be a finite group. The ∗-Hopf algebra A(G) admits a
Haar state defined by

φ(a) := ∑
g∈G

a(g).

Note that this is really the integral with respect to Haar measure,

φ(a) =
∫

G
a(g) dµ(g),

since here the Haar measure µ is counting measure. When checking the ax-
ioms, one sees that the left-invariance of φ, as in Definition 1.5.5 corresponds
exactly to the left-invariance of the Haar measure on G. Essentially the same
argument works for the Hopf ∗-algebra A(G) of matrix coefficients on any
compact group G, see the next chapter.

Example 1.5.7. Let G be a finite group. The convolution algebra D(G) of
Example 1.4.3 is a compact quantum group algebra with Haar state

φ̂(u) := u(e).

Exercise 1.5.8. Check the above examples.
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We have now obtained a reasonable notion of the noncommutative alge-
bra of functions on a finite, or compact, quantum group. The notion of the
quantum group itself is purely formal. It has no concrete existence on its own
outside of these algebras. Nevertheless, we will use the notation A = A(G)
whenever we wish to interpret a compact quantum group algebra A as for-
mally representing an algebra of functions on some hypothetical quantum
group G.

1.6 Duality

Let A and D be Hopf ∗-algebras. We denote the Hopf algebra operations on
A without hats and on D with hats.

Definition 1.6.1. A bilinear map

( , ) : D ×A → C

is called a skew-pairing if for all a, b ∈ A, u, v ∈ D,

(u, ab) = (∆̂(u), b⊗ a), (uv, a) = (u⊗ v, ∆(a)),

(u, 1) = ε̂(u), (1, a) = ε(a),

(u, a∗) = (Ŝ−1(u)∗, a), (u∗, a) = (u, S(a)∗).

Lemma 1.6.2. Either of the two conditions in the last line of Definition 1.6.1 follows
from the other. Moreover, we also have

(u, S(a)) = (Ŝ−1(u), a), (Ŝ(u), a) = (u, S−1(a)),

for all a ∈ A, u ∈ D.

Theorem 1.6.3. Let A be a finite quantum group algebra and denote its dual space
by D = A∗. Then D admits a unique structure of a Hopf ∗-algebra such that the
canonical pairing

D ×A → C

is a skew-pairing of ∗-Hopf algebras. Moreover, the Haar integral on A induces a
linear isomorphism F : A → D defined by

F (a)(b) := φ(ba),

and the linear form φ̂ : D → C defined on D by

φ̂(F (a)) = ε(a)

is a Haar integral. Therefore D is a finite quantum group algebra.

If we are interpreting A = A(G) as the algebra of functions on a hypothet-
ical quantum group G, then we will write D(G) for the dual space of A(G)
with the Hopf ∗-algebra structure of the above theorem.
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Remark 1.6.4. Given the presentation in these notes, we can’t quite extend The-
orem 1.6.3 to general compact quantum groups. To understand the problem,
consider the algebra of smooth compactly supported densities D∞(G) on a
classical compact group. Under the coproduct

∆ = Diag∗ : E ′(G)→ E ′(G× G),

a smooth density is mapped to a distribution supported on the diagonal
Diag(G) ⊂ G × G. This never a smooth density, unless it is zero. In par-
ticular, we don’t have ∆ : D∞(G)→ D∞(G)⊗D∞(G).

It is possible to extend the framework of compact quantum groups so that
∆ maps A into the multiplier algebra of A⊗A. With some additional axioms,
this yields the notion of a multiplier Hopf algebra and then an algebraic quantum
group, due to Van Daele [VD98] which is nicely adapted to duals of compact
quantum groups. Unfortunately, we won’t have time to study this.

In the context of finite quantum groups, and in particular Theorem 1.6.3,
Pontryagin Duality is reduced to the level of a formal definition. Since D(G)
is a finite quantum group algebra, we can formally define it to be the algebra
of functions A(Ĝ) on some hypothetical finite quantum group Ĝ. We can’t do
any better than this, because quantum groups only exist at the formal level of
algebras anyway.

Classical Pontryagin Duality is recovered from this abstract nonsense only
when we realize that when G is abelian, the commutative algebra A(Ĝ) :=
D(G) is isomorphic to the algebra of functions on some finite space Ĝ. That is,
we have replaced Pontryagin Duality by Gelfand Duality. Moreover, Gelfand
duality says that the comultiplication ∆̂ : A(Ĝ)→ A(Ĝ)⊗A(Ĝ) = A(Ĝ× Ĝ)
is given by the pull-back by a map Ĝ× Ĝ → Ĝ, and the Hopf algebra axioms
imply that this defines an associative group law on Ĝ.

In the literature, the linear isomorphism F : A(G) → D(G) is sometimes
referred to as the “Fourier transform”. This is a little bit misleading, since in
the case of a classical Lie group, F is really just the map

F : C∞
c (G)→ C∞

c (G; |Ω1|)

which sends a smooth function a to the smooth density aµ. This map is fairly
trivial. The Fourier transform is obtained from this only once we compose
this map with the Gelfand transform.

Along the above lines, one can show that any commutative finite quantum
group algebra is isomorphic to A(G) for some finite group G, and any cocom-
mutative finite quantum group algebra is isomorphic to D(G) for some finite
group G. So far, these are the only examples we have.

There are some simple constructions to obtain finite dimensional exam-
ples which are neither commutative nor cocommutative, such as the Drinfeld
double. But our focus in these notes will be a more interesting family of quan-
tum deformations of compact semisimple Lie groups, which we discuss in the
coming chapters.

14



Chapter 2

Matrix coefficient algebras

2.1 Unitary representations and matrix coefficients

Let’s return briefly to the discrete Fourier transform, Theorem 1.1.4. This is
of course, really a result from unitary representation theory. Let’s recall the
definitions.

Definition 2.1.1.

• Let G be a locally compact topological group. A unitary representation of
G on a Hilbert space V is a weakly continuous map

π : G → U(V)

where U(V) denotes the space of unitary operators on G.

• A subrepresentation of V is a subspace W ≤ V which is invariant under
the representation:

π(g)W ⊆W, for all g ∈ G.

• A unitary representation is irreducible if it has no non-trivial proper sub-
representation 0 � W � V.

Weakly continuous means that for any pair of vectors ξ, η ∈ V, the map

〈ξ| • |η〉 : G → C; g 7→ 〈ξ, π(g)η〉. (2.1.1)

is continuous. Maps of this form are called matrix coefficients of the represen-
tation g, and they will play a major role here. We are using the physicists’
bra-ket notation 〈ξ| • |η〉 to denote these matrix coefficient functions.
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If V = V1 ⊕ V2 is a decomposition of V as a direct sum of two subrep-
resentations, then V1 and V2 are orthogonal. As a consequence, any matrix
coefficient of V decomposes as a sum of matrix coefficients for V1 and V2.

For a compact group G, any unitary representation π : G → U(V) decom-
poses as a direct sum of irreducible representations, meaning

V =
⊕

i
Vi

where Vi are mutually orthogonal subspaces, each invariant under π.

Moreover, if π is any continuous representation on a finite dimensional
vector space V,

π : G → Aut(V)

then V admits an inner product which makes G unitary. Therefore, any finite
dimensional representation decomposes as a direct sum of irreducibles. It
follows that any matrix coefficient of a finite dimensional representation is a
sum of matrix coefficients of irreducible representations.

It is often convenient to ignore the Hilbert space structure, and consider
matrix coefficients associated to a vector ξ ∈ V and a covector ξ ′ ∈ V∗:

〈ξ ′| • |ξ〉 : G 7→ 〈ξ ′, π(g)ξ〉 := ξ ′(π(g)ξ).

Example 2.1.2. For every n ∈ Z, the map

πn : T→ U(C); πn(eiθ) = einθ

is a unitary representation of T. These are all the irreducible representations
of T, up to isomorphism.

Therefore, the matrix coefficients of πn are just the multiples of the func-
tions zn : eiθ 7→ einθ . As a consequence, the set of matrix coefficients of all finite
dimensional representations of T is precisely the space A(T) of trigonometric
polynomials from Section 1.1.

Definition 2.1.3. Let G be a compact group. We write A(G) for the set of all
matrix coefficients of finite dimensional representations of G.

Proposition 2.1.4. The space A(G) is a compact quantum group algebra with Hopf
algebra operations analogous to Example 1.4.2, namely

(ab)(g) = a(g)b(g), 1(g) = 1,

∆(a)(g, h) = a(gh), ε(a) = a(1),

S(a)(g) = a(g−1).

and Haar state
φ(a) =

∫
G

a(g) dg.
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One of the key points in this proposition is that all the maps are well-
defined on A(G). Elements of the proof of this will be useful to us later.
Before giving the proof, we need to recall the definition of a tensor product of
representations.

Definition 2.1.5. Let π : G → Aut(V) and τ : G → Aut(W) be two finite
dimensional representations of G. The tensor product of π and τ is the repre-
sentation defined by

π ⊗ τ : G → Aut(V ⊗W); (π ⊗ τ)(g)(v⊗ w) = π(g)v⊗ π(g)w.

Remark 2.1.6. If we want to be fussy, the notation π ⊗ τ is really an abbrevi-
ation for the composition (π ⊗ τ) ◦Diag : g 7→ π(g)⊗ τ(g). The appearance
of the diagonal embedding Diag here is of course relevant to the definition of
the product in A(G).

Proof of Proposition 2.1.4. Let a = 〈ξ ′| • |ξ〉 be a matrix coefficient of π : G →
End(V) and b = 〈η′| • |η〉 be a matrix coefficient of τ : G → End(W).

For the algebra structure, we note that

ab(g) = 〈ξ ′|π(g)|ξ〉〈η′|τ(g)|η〉 = 〈ξ ′ ⊗ η′|(π ⊗ τ)(g)|ξ ⊗ η〉,

where π ⊗ σ : G → End(V ⊗W) is the tensor product representation, so that
ab is again in A(G). The constant function 1 is a matrix unit for the trivial
representation of G on C.

For the coalgebra structure, let (ei) be a basis for V and (ei) a dual basis
for V∗. Then

∆(a)(g, h) = 〈ξ ′|π(g)π(h)|ξ〉 = ∑
i
〈ξ ′|π(g)|ei〉〈ei|π(h)|ξ〉.

In other words
∆(〈ξ ′| • |ξ〉) = ∑

i
〈ξ ′| • |ei〉 ⊗ 〈ei| • |ξ〉. (2.1.2)

This shows that ∆ : A(G)→ A(G)⊗A(G) is well-defined.

For the antipode, we recall the definition of the contragredient representation

πc : G → End(V∗); πc(g)ξ ′ = ξ ′ ◦ π(g−1).

With this, we have

S(a)(g) = a(g−1) = 〈ξ ′|π(g−1)|ξ〉 = 〈ξ|πc(g)|ξ ′〉,

under the natural identification ξ ∈ V ∼= V∗∗. Therefore S(a) is a matrix
coefficient of πc.
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To see that the involution applied to a matrix coefficient gives again a
matrix coefficient, one needs to consider the conjugate representation of a repre-
sentation π : G → End(V). Recall that the conjugate vector space V is V with
a modified C-linear structure, given by

ξ + η = ξ + η,

λξ = λξ,

for ξ, η ∈ V, λ ∈ C. Then the representation π on V is also a representation
on V, which we denote by π. One can then check that

〈ξ ′| • |ξ〉∗ = 〈ξ ′| • |ξ〉.

Once we know that these maps are well-defined, the axioms of a Hopf ∗-
algebra axioms can be checked directly. The fact that φ is a Haar integral can
be checked as in Exercise 1.5.6.

The coproduct in equation (2.1.2) is called the matrix coproduct. It corre-
sponds to the usual product law for matrix coefficients: (AB)ik = ∑j AijBjk.

We can give a more algebraic description of the Haar state.

Lemma 2.1.7. Let G be a compact group and a = 〈ξ ′| • |ξ〉 ∈ A(G) a matrix
coefficient of an irreducible finite dimensional representation π : G → Aut(V). Show
that the Haar state applied to a is

φ(a) =

{
〈ξ ′, ξ〉, if π is the trivial representation,
0, otherwise.

2.2 Representations of SU(2)

Let’s now consider the compact group G = SU(2). This is a 3-dimensional Lie
group,

SU(2) =
{

g =

(
α −β
β α

)∣∣∣∣ α, β ∈ C, |α|2 + |β|2 = 1
}

, (2.2.1)

diffeomorphic to the unit sphere in C2.

The group SU(2) acts on C2 by its usual linear action. This defines a
representation

τ : SU(2)→ Aut(C2),

called the fundamental representation, which is unitary with respect to the stan-
dard inner product.
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To get other representations, we can proceed as follows. Let Vn denote
the set of homogeneous polynomials of degree n in two variables z = (z1, z2).
Then SU(2) acts by pull-back on Vn, giving us a representation

πn : SU(2)→ Aut(Vn); (πn(g)p)(z) = p(g−1z).

This is a representation is of dimension n + 1 since Vn is spanned by the
polynomials zn

1 , zn−1
1 z2, . . . , zn

2 . It is unitary with respect to the inner product

〈p, q〉 =
∫

S3
p(z)q(z) dz

where S3 is the unit sphere in C2 and dz is the unique rotation-invariant
smooth measure.

Theorem 2.2.1. The representations πn above are all irreducible. Moreover, every
irreducible unitary representation of SU(2) is isomorphic to one of these representa-
tions.

For instance, the trivial representation of SU(2) is isomorphic to π0 and
the fundamental representation is isomorphic to π1.

This theorem is of fundamental importance for the representation theory
of semisimple Lie groups. To prove it, it’s best to use the Lie algebra of SU(2),
which we’ll deal with in chapter ??.

Therefore, the compact quantum group algebra A(SU(2)) is spanned by
the matrix coefficients of the representations πn. For instance, we have the
matrix coefficients of the fundamental representation

〈e1| • |e1〉 :
(

α −β
β α

)
7→ α,

〈e2| • |e1〉 :
(

α −β
β α

)
7→ β,

where α, β are the coefficients as in Equation 2.2.1. It follows that A(SU(2))
contains all polynomials in α, β and their conjugates. In fact, A(SU(2)) is
precisely the algebra of such polynomials, under pointwise multiplication.

2.3 The Lie algebra

As is often the case, it is much easier to work with linear spaces than smooth
manifolds. This motivates us to pass to the Lie algebra su(2). Let’s recall the
definitions, in the generality of SU(N). The reader familiar with Lie algebras
can skip this section.

The Lie algebra g = su(N) is the tangent space of G = SU(N) at the
identity element I. This we can calculate. If g : R→ SU(N) is a smooth curve
with g(0) = I, then it has the form

g(t) = I + tX + o(t)
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for some tangent vector X = g′(0) ∈ su(N). Since g(t) is unitary for all t we
get

I = (I + tX + o(t))∗(I + tX + o(t)) = I + tX + tX∗ + o(t)

and so
X + X∗ = 0.

Similarly, using the fact that for any X ∈ MN(C) we have Det(I + tX +
o(t2)) = 1 + t Tr(X) + o(t2), we deduce that Tr(X) = 0 for any X ∈ su(N). As
a consequence, we have

su(N) = {X ∈ MN(C) | X = −X∗ and Tr(X) = 0}.

This linear space retains information about the group structure on SU(N)
as follows. Let g ∈ SU(N). The conjugation map

Adg : G → G; Adg(h) = ghg−1

is a smooth map which sends I to I, so it has a derivative on the tangent space
at I, which we denote by

Adg : g→ g.

Again, we can calculate this by considering the action of Adg on a smooth
family of elements h(t) = I + tY + o(t) as follows:

Adg(I + tY + o(t)) = I + tgYg−1 + o(t),

so
Adg(Y) = gYg−1.

Next we can differentiate this map Ad : G → End(g) with respect to g ∈ G,
to obtain a map ad : g → End(g). Consider, as usual, a smooth curve g(t) =
I + tX + o(t) ∈ SU(N). One can easily check that g(t)−1 = I − tX + o(t),
which is to say that the derivative of the inverse map ι : G → G is

dιI : X → −X. (2.3.1)

Therefore

Adg(t)(Y) = g(t)Yg(t)−1 = (I + tX + o(t))Y(I − tX + o(Y))

= Y− tXY− tYX + o(t),

and hence the derivative of Ad is given by

adX(Y) = XY−YX =: [X, Y].

This expression [X, Y] is the Lie bracket of X and Y.

Definition 2.3.1. A real-linear subspace g ⊂ Mk(R) is called a Lie algebra if it
is closed under the Lie bracket, i.e., for any X, Y ∈ g we have [X, Y] ∈ g.
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Remark 2.3.2. There is an abstract definition of Lie algebra as a vector space
g with a Lie bracket [•, •] : g× g → g which is bilinear, antisymmetric, and
satisfies the Jacobi identity. Since we will only be concerned with matrix
groups, Definition 2.3.1 will be enough for our needs.

Example 2.3.3. The Lie algebra su(2) is{(
ia b + ic

−b + ic −ia

)∣∣∣∣ a, b, c ∈ R

}
.

It is a real Lie algebra of dimension 3.

2.4 Representations of Lie algebras

Suppose π : SU(N) → Aut(V) is a smooth finite dimensional representation
of the group G = SU(N). Once again, we can differentiate this at the identity
to obtain a derived map π : g→ End(V). Explicitly, we have

π(I + tX + o(t)) = 1 + t.π(X) + o(t)

for any smooth curve g(t) = I + tX + o(t) in SU(N). One can check that the
derived map on g is a Lie algebra representation in the following sense.

Definition 2.4.1. Let g be a Lie algebra. A representation of g on a vector
space V is a linear map π : g → End(V) which is a Lie algebra morphism,
meaning

π([X, Y]) = [π(X), π(Y)]

for all X, Y ∈ g.

Theorem 2.4.2. Let G be a connected and simply connected Lie group, for example
SU(N). The above correspondence from smooth finite dimensional representations of
G to Lie algebra representations of g is bijective. That is, every representation of the
Lie algebra can be ’exponentiated’ to give a representation of the Lie group.

Example 2.4.3. Let G = T be the circle group. We can see this as the group
of complex numbers of modulus 1 in M1(C). The Lie algebra of T can be
identified as t ∼= R, such that x ∈ R corresponds to the a curve of type

g(t) = eitx = 1 + t.ix + o(t2).

The differential of the group representation

πn : T→ Aut(C1); πn(z) 7→ zn

is then the Lie algebra representation

πn : R→ End(C1); πn(x) = inx.

As a consequence we have the following result.
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Proposition 2.4.4. For any finite dimensional representation of T, the derived rep-
resentation of 1 ∈ t is diagonal with all eigenvalues in iZ.

Remark 2.4.5. The integrality observed in Proposition 2.4.4 is of central impor-
tance in the theory of weights for representations of SU(N). But we won’t have
time to go into this.

Example 2.4.6. The fundamental representation of SU(N) is the representation
on CN defined by

π(g)ξ = g.ξ (g ∈ SU(N), ξ ∈ CN).

The associated Lie algebra representation is given by

π(X)ξ = X.ξ (X ∈ su(N), ξ ∈ CN).

Example 2.4.7. The derivative of the trivial representation,

ε̂ : G → Aut(C); ε̂(g) = 1,

is the trivial Lie algebra representation,

ε̂ : g→ End(C); ε̂(X) = 0. (2.4.1)

It is important to note how tensor products of representations behave when
converted into Lie algebra representations. Recall that if π : G → Aut(V) and
τ : G → Aut(W) are finite dimensional representations, then their tensor
product is

π ⊗ τ : G → Aut(V ⊗W); (π ⊗ τ)(g) = π(g)⊗ τ(g).

If g(t) = I + tX + o(t) is a smooth curve in G, then

(π ⊗ τ)(g(t)) = (1⊗ 1 + tπ(X)⊗ 1 + 1⊗ tτ(X) + o(t))

so that the differential representation of g is

(π ⊗ τ)(X) = π(X)⊗ 1 + 1⊗ τ(X). (2.4.2)

This is the Leibniz rule for Lie algebra representations.

2.5 Complexification

The Lie algebra associated to a Lie group is a real vector space. It is usually
easier to work with a complex vector space.

Definition 2.5.1. The complexification of a real Lie algebra g is the space gC =
g⊕ g, viewed as g+ ig, equipped with the Lie bracket [•, •] which extends the
bracket of g to a C-bilinear map.
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In the above definition, i is a formal notation, used to define an abstract
C-linear structure on g⊕ g. However, for the Lie algebra g = su(N) we can be
more explicit, since it is embedded as a real subspace of MN(C), namely the
space of traceless skew-adjoint matrices. Multiplying this by i we get isu(N) is
the space of traceless self-adjoint matrices. Since these have intersection {0},
we get

su(N)C = su(N) + isu(N) = sl(N, C) = {X ∈ MN(C) | Tr(X) = 0}

with its usual Lie bracket, [X, Y] = XY−YX.

Any R-linear representation of g on a complex vector space extends canon-
ically to a C-linear representation of gC. This is important, since the eigenval-
ues of representations of elements X ∈ g are purely imaginary, cf. Proposition
2.4.3.

Example 2.5.2. The complexification of su(2) is sl(2, C), which is a three-
dimensional complex Lie algebra with basis

E =

(
0 1
0 0

)
, H =

(
1 0
0 −1

)
, F =

(
0 0
1 0

)
.

The Lie bracket is given in this basis by

[H, E] = 2E, [H, F] = −2F, [E, F] = H. (2.5.1)

These are the defining relations of the Lie algebra sl(2, C), and they are
fundamental importance in representation theory of semisimple Lie groups.
Note, in particular, that the adjoint action of H,

ad(H) = [H, •] : g→ g,

is diagonal with respect to the basis E, H, F with eigenvalues 2, 0,−2, respec-
tively.

2.6 The universal enveloping algebra

Theorem 2.6.1. Let g be a finite dimensional Lie algebra. There exists an associative
algebra U (gC) over C, unique up to isomorphism, which contains gC as an embedded
Lie subalgebra and such that any Lie algebra morphism gC → A of gC into a complex
associative algebra A factors as gC ↪→ U (gC) → A for some algebra morphism
U (gC)→ A.

The point of the enveloping algebra is that it allows us to define prod-
ucts of Lie algebra elements. For instance, elements of U (su(2)C) are linear
combinations of monomials in the generators E, H, F of Example 2.5.2. The
product of two such monomials can be calculated by commuting the terms
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past one another using the relations (2.5.1). This is basically the contents of
the Poincaré-Birkhoff-Witt Theorem.

We won’t go into the details of the construction, although it isn’t particu-
larly difficult.

After all the above constructions, beginning with a smooth representation
of G on a complex vector space V, we obtain a C-linear algebra representation
of U (g) by the following steps:

π : G → Aut(V) (Lie group representation)
differentiate−→ π : g→ EndR(V) (R-Lie alg. representation)
complexify−→ π : gC → EndR(V) (C-Lie alg. representation)
universality−→ π : U (gC)→ EndR(V) (C-alg. representation)

Algebra representations are much more manageable than group representa-
tions. But moreover, the enveloping algebra is not just an associative algebra,
it is a Hopf ∗-algebra.

Theorem 2.6.2. The universal enveloping algebra U (gC) of a complexified Lie algebra
admits a unique Hopf ∗-algebra such that the operations on elements X ∈ g are given
by

coproduct: ∆̂(X) = X⊗ 1 + 1⊗ X,

counit: ε̂(X) = 0,

antipode: Ŝ(X) = −X,

involution: X∗ = −X.

That is, these definitions can be extended C-linearly (antilinearly in the case of ∗) and
multiplicatively (anti-multiplicatively in the case of Ŝ and ∗) to all of U (g). Moreover,
the natural bilinear pairing

( , ) : U (gC)×A(G)→ C; (X, 〈x′| • |ξ〉) := (xi′, π(X)ξ).

is a nondegenerate skew-pairing of Hopf ∗-algebras.

The proof follows from duality with the Hopf algebra operations on A(G).
We won’t give the details. But note that the definition of the coproduct is
inspired by the Leibniz rule (2.4.2), the counit by the trivial representation
(2.4.1), and the antipode by the derivative of the inverse (2.3.1).

Exercise 2.6.3. Let a = 〈ξ ′| • |ξ〉 ∈ A(G) be a matrix coefficient of a smooth
finite dimensional representation. Show that if X ∈ g is tangent to a curve
γ(t) = I + tX + o(t) through the identity then the pairing is given by

(X, a) =
d
dt

a(γ(t))|t=0.

Thus the pairing with X is equal to a derivative of the Dirac distribution at
the identity.
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This exercise shows that we have an embedding g ↪→ E ′(G) of the Lie
algebra as distributions supported at the identity. Since convolution of distri-
butions is given by Mult∗, the set of distributions supported at the identity is a
subalgebra of E ′(G). It follows from the skew-pairing that U (g) embeds as the
algebra distributions on G supported at the identity. This gives an alternative
definition of the enveloping algebra U (gC).

The enveloping algebra U (g) is an alternative ‘dual object’ for the Hopf
∗-algebra A(G) of a compact Lie group, which is in many ways simpler to
define than the algebra D(G), which we have still not actually defined in
general. It has the small disadvantage that U (gC) is not a compact quantum
group algebra, because it doesn’t have a Haar integral, but this is a minor
complaint.
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Chapter 3

the quantum group SUq(2)

Finally, we can give the first example of a compact quantum group which is
neither commutative nor cocommutative: the quantum group SUq(2). The ex-
istence of this quantum group was first observed by mathematical physicists
working on quantum scattering theory and the quantum Yang-Baxter equa-
tion. We’ll skip all the historical context and move directly to their first mathe-
matical observation—the existence of a quantum deformation of the universal
enveloping algebra of sl(2, R). This algebra is the first in a whole family of
quantized enveloping algebras called Drinfeld-Jimbo algebras after their discov-
erers.

3.1 q-numbers

Throughout this section we fix a strictly positive real number q ∈ R×+ with
q 6= 1. We will sometimes write q = eh with h ∈ R \ {0}. This is the quantizing
parameter. Taking the limit as q → 1 gives the classical Hopf ∗-algebras
U (su(2)C) and A(SU(2)) from the previous chapter.

Definition 3.1.1. Let z ∈ C. The q-number [z]q is defined as

[z]q =
qz − q−z

q− q−1 .

Exercise 3.1.2. Show that as q→ 1 we have [z]q → z.

We often suppress the index q from the notation.

These q-numbers are like non-linear versions of the classical numbers. For
instance, we don’t have [a]q + [b]q = [a + b]q in general, but we do have the
identity [a + b]q[a− b]q = [a]2q − [b]2q.
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3.2 The quantized enveloping algebra Uq(su(2)C)

Recall that the classical enveloping algebra U (su(2)C) is generated by three
elements E, H, F satisfying the relations

[H, E] = 2E, [H, F] = 2F, [E, F] = H.

The fundamental idea of the quantized enveloping algebra Uq(su(2)C) is to
replace these relations by

[H, E] = 2E, [H, F] = 2F, [E, F] = [H]q (3.2.1)

where

[H]q :=
qH − q−H

q− q−1 . (3.2.2)

The inspiration for this comes from the theory of Poisson quantization. But
it raises the technical problem of how to make sense of the expression (3.2.2),
which is not an algebraic relation because qH is a transcendental function of
H.

There are many possible solutions. An operator algebraic approach is to
define qH by functional calculus, after representing E, F, H as unbounded op-
erators on some Hilbert space. There is also an h-adic approach, by expanding
qH = ehH as a formal power series in the parameter h.

But the standard approach, which is entirely algebraic, is simply to replace
the generator H by a new generator K := qH . The side-effect of this is that
we are forced also to replace the first two relations in (3.2.1). To motivate this,
some functional calculus.

Exercise 3.2.1. Let H be a self-adjoint operator on a Hilbert space V. In this
context, we can define the operator etH for all t ∈ R. Show that if X ∈ B(V)
and λ ∈ R, we have [H, X] = λX if and only if etHXe−tH = etλX for all t ∈ R.

Putting K = qH = ehH and using the above exercise, this suggests the
following definition.

Definition 3.2.2. The quantized universal enveloping algebra Uq(su(2)C) is
the universal algebra generated by three elements E, K, F such that K is invert-
ible, and subject to the relations

KEK−1 = q2E, KFK−1 = q−2F, [E, F] =
K− K−1

q− q−1 . (3.2.3)

We equip it with the involution defined by

E∗ = KF, F∗ = EK−1, K∗ = K.
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Remark 3.2.3. In the above definition we have imposed that K is self-adjoint.
As we will see later, this is not quite strong enough for our purposes. We are
supposed to be thinking that K = qH with H self-adjoint, which means that
K is not just self-adjoint but positive. But positivity is not a purely algebraic
condition, so we will have to impose this later when we define the algebra
A(SU(2)) of matrix coefficients.

As in the classical case, Uq(su(2)C) is a Hopf ∗-algebra, compare Theorem
2.6.2.

Theorem 3.2.4. The quantized enveloping algebra Uq(su(2)C) admits a unique Hopf
∗-algebra structure such that the operations on the generators are given by

∆̂(E) = E⊗ K + 1⊗ E,

∆̂(F) = F⊗ 1 + K−1 ⊗ F,

∆̂(K) = K⊗ K,

ε̂(E) = ε̂(F) = 0, ε̂(K) = 1,

Ŝ(E) = −EK−1, Ŝ(F) = −KF, Ŝ(K) = K−1.

3.3 Finite dimensional representations of Uq(su(2)C)

Let π be a representation of Uq(su(2)C) on a finite dimensional vector space
V. Using the relations

KEK−1 = q2E and KFK−1 = q−2F,

we can see that if v ∈ V is an eigenvector for K with eigenvalue λ = qα,
then π(E)v and π(F)v are eigenvectors for K with eigenvalues qα+2 and qα−2,
respectively. It follows that if V is irreducible, then π(K) acts diagonally on V
with all eigenvalues in qα+2Z.

The exponents α + 2Z are called the weights of the representation, and the
eigenvectors of K are weight vectors.

As mentioned in Remark 3.2.3, we are only really interested in represen-
tations in which π(K) is a positive operator. Such representations are called
integrable or type 1. With a little elementary linear algebra, one can obtain the
following classification of the irreducible integrable representations.

Theorem 3.3.1 (Classification of ). Let n ∈ N. Let Vn be an (n + 1)-dimensional
vector space with basis vn, vn−2, vn−4, . . . , v−n.

There is an irreducible representation πn of Uq(su(2)C) on Cn+1 defined by

πn(K) : vj 7→ qjvj

πn(F) : vj 7→ vj−2

πn(E) : vj 7→ [ 1
2 (n− j)]q[ 1

2 (n + j + 2)]qvj+2,
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and there is an inner product on Vn such that πn is a ∗-representation. With respect
to this inner product, (vj) is an orthogonal but not orthonormal basis.

Moreover, every irreducible integrable representation of Uq(su(2)C) is isomorphic
to one of these representations πn.

The representations πn are the quantum analogues of the irreducible su(2)-
representations πn from Section 2.2. The trivial representation is π0. It is
equivalently given by the counit of Uq(su(2)C),

π0 = ε̂ : Uq(su(2)C)→ End(C).

Thanks to the existence of a coproduct ∆̂ on Uq(su(2)C), we can also define
the tensor product of two finite dimensional representations π : Uq(su(2)C)→
End(V) and τ → End(W),

(π ⊗ τ)(X) = π(X(1))⊗ τ(X(2)).

This is the analogue of the Leibniz rule (2.4.2). In this way, the finite di-
mensional integrable representations of Uq(su(2)C) form a monoidal category,
which we denote by Rep(SUq(2)).

Remark 3.3.2. Unlike the classical enveloping algebra U (su(2)), the coproduct
∆̂ on Uq(su(2)C) is not cocommutative. Therefore, the flip map S : V ⊗W →
W ⊗ V does not intertwine the representations π ⊗ τ and τ ⊗ π in general.
Nevertheless, one can show that there is a natural family of intertwiners V ⊗
W → W ⊗ V, making Rep(SUq(2)) into a braided monoidal category. This
braiding structure was important for the original applications to the quantum
Yang-Baxter equation.

3.4 The compact quantum group SUq(2)

Definition 3.4.1. We define A(SUq(2)) to be the subspace of the dual space
of Uq(su(2)C) consisting of matrix coefficients of finite dimensional integrable
representations,

A(SUq(2)) = {〈ξ ′| • |ξ〉 ∈ (Uq(su(2)C))
∗ |

ξ ∈ V, ξ ′ ∈ V∗ for some fin. dim. integrable rep. V}.

Theorem 3.4.2. The space A(SUq(2)) admits the structure of a compact quantum
group algebra such that the canonical pairing

( , ) : Uq(su(2)C)×A(SUq(2))→ C; (X, 〈ξ ′| • |ξ〉) = ξ ′(π(X)ξ)

is a skew-pairing of ∗-Hopf algebras.
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Proof. Since we know that Uq(su(2)C) is a ∗-Hopf algebra, the proof is essen-
tially the same as that for the algebra A(G) of matrix coefficients for a clas-
sical group in Proposition 2.1.4. We define the Hopf ∗-algebra operations on
A(SUq(2)) by skew-duality with the operations on Uq(su(2)C). To check these
are well-defined it suffices to compute how they act on matrix coefficients:

• 〈ξ ′| • |ξ〉〈η′| • |η〉 = 〈η′ ⊗ ξ ′| • |η ⊗ ξ〉,

• 1 = 〈1| • |1〉, as a matrix coefficient for the trivial rep. ε̂,

• ∆〈ξ ′| • |ξ〉 = ∑j〈ξ ′| • |ej〉 ⊗ 〈ej| • |ξ〉, where (ej) and (ej) are dual bases for
V and V∗,

• ε(〈ξ ′| • |ξ〉) = (ξ ′, ξ),

• S(〈ξ ′| • |ξ〉) = 〈ξ| • |ξ ′〉, as a matrix coefficient for the precontragredient
representation cπ(X) = π(Ŝ−1(X))t,

• 〈ξ ′| • |ξ〉∗ = 〈ξ ′| • |ξ〉, as a matrix coefficient for the conjugate representa-
tion π ◦ Ŝ ◦ ∗ on V.

The Haar state is given on matrix coefficients for an irreducible representation
π by

φ(〈ξ ′| • |ξ〉) =
{
(ξ ′, ξ), if π is the trivial rep.
0, else.

Remark 3.4.3. In the definition of the product, the tensor factors are flipped on
the right-hand side in order to have a skew-pairing of Hopf ∗-algebras. This
wasn’t necessary in the classical case, because the product is commutative.

3.5 Quantum groups and noncommutative geome-
try

Theorem 3.4.2 provides us with a whole family of compact quantum groups
SUq(2) with 0 < q < ∞. We declare the algebra A(SU1(2)) to be the classical
algebra of matrix coefficients for SU(2).

Note that the algebrasA(Gq) are all canonically isomorphic as linear spaces.
This is because for different values of q, the irreducible representations πn
(n ∈ N) are all defined on the same vector space Vn = Cn+1. Therefore, the
space of matrix coefficients is

A(SUq(2)) =
⊕
n∈N

V∗n ⊗Vn =
⊕
n∈N

End(Vn)
∗
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for every q ∈ (0, ∞). Further, they are all isomorphic as coalgebras, since the
coproduct in each case is given by

∆̂ : 〈ξ ′| • |ξ〉 7→∑
i
〈ξ ′| • |ei〉 ⊗ 〈ei| • |ξ〉.

In fact, the only thing that varies between them is the algebra structure. Since
the coproduct is supposed to represent the group law, ∆̂ = Mult∗, and the
product is supposed to represent the topology, via Gelfand’s Theorem, this is
to say that the quantum groups SUq(2) are all identical as groups, but we have
changed the topology. That topology, for q 6= 1, is noncommutative, in the
sense of Connes.

To look further into this noncommutative topology, we can complete the
∗-algebras A(SUq(2)) to C∗-algebras. Specifically, using the Haar state φ on
A(Gq), we can define a faithful inner product on A(SUq(2)) by

〈a, b〉 = φ(a∗b).

The Hilbert space completion is denoted L2(SUq(2)), and the GNS construc-
tion yields a representation of A(SUq(2)) on L2(SUq(2)) by left multiplica-
tion. The norm-closure of A(SUq(2)) in B(L2(SUq(2))) is denoted C(SUq(2))
and called the algebra of continuous functions on the compact quantum group
SUq(2). Note that the same construction for the classical group SU(2)G yields
the algebra C(SU(2)) by the Stone-Weierstrass Theorem.

It turns out that these C∗-algebras are all isomorphic. In fact, they are all
isomorphic to a particularly simple C∗-algebra: the graph C∗-algebra associ-
ated to the graph

• •

This was observed by Woronowicz [Wor87], with generalizations by Hong-
Szymanski [HS02]. On the other hand, the dense subalgebras A(SUq(2)) are
not isomorphic, which suggests that the quantum groups SUq(2) are the same
as noncommutative topological spaces, but not as noncommutative smooth
manifolds.

Similar quantum group deformations are possible for any simply con-
nected compact semisimple Lie group G. Drinfeld and Jimbo defined a quan-
tization UR

q (g) of the enveloping algebra, and the algebra of matrix coefficients
of finite dimensional integrable representations is again a compact quantum
group algebra A(Gq) for all q ∈ (0, ∞), q 6= 1.

These quantum groups and their homogeneous spaces are natural candi-
dates for noncommutative smooth manifolds, in the sense of Connes. But
they don’t fulfil Connes’ original axioms. Chakraborty-Pal [CP03] managed
to define nice spectral triples on SUq(2), but the problem of incorporating the
higher rank examples into Connes’ framework has turned out to be surpris-
ingly difficult.
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