|
ÃëÁö: ÀÛ¿ë¼ÒÀ̷аú ÀÛ¿ë¼Ò´ë¼ö¿¡ °ü½ÉÀÖ´Â Àü±¹ÀÇ ´ëÇпø»ý
¹× ±³¼öµéÀ» ´ë»óÀ¸·Î ÀÌ ºÐ¾ß
¿¬±¸ÀÇ HOT TopicÀ» ±âÃʺÎÅÍ ÃÖ±Ù ¿¬±¸µ¿Çâ±îÁö ¹è¿ï ¼ö
ÀÖ´Â ±âȸÀÔ´Ï´Ù. ¼÷½ÄÀ»
Á¦°øÇÕ´Ï´Ù.
ÀÏÁ¤: 2008³â 12¿ù 21ÀÏ (ÀÏ) - 24ÀÏ (¼ö)
Àå¼Ò: ¸¸¸®Æ÷û¼Ò³â¼ö·Ã¿ø(ÇØ¾ç¿¬¼ö¿ø)
(ÀüÈ:
041-671-7500; ȨÆäÀÌÁö:http://www.malipo.co.kr/
)
Âü°¡½Åû±â°£: 2008³â 11¿ù 30ÀϱîÁö
¾Æ·¡ÀÇ ¿¬¶ôó·Î Àüȳª À̸ÞÀÏ·Î
½Åû
ÁÖÁ¦
Á¦1ÁÖÁ¦: Jun Tomiyama (Tokyo Metropolitan Univ, Japan)
Çà·Ä´ÜÁ¶ÇÔ¼ö¿Í Çà·Äº¼·ÏÇÔ¼ö ÀÌ·ÐÀÇ ÃÖ±Ù µ¿Çâ
(Recent development of the theory of matrix monotone functions
and of matrix convex functions )
Á¦1°. Introduction, the whole picture with a little history and some of recent topics
Á¦2°. Criteria of matrix monotonicity and convexity with gaps for them
Characterizations of 2-convex functions
Á¦3°. Bipiling structure of matrix monotone and of convex functions
Monotone functions and convex functions on C*-algebras
Á¦2ÁÖÁ¦: Ȳ ÀÎ ¼º (¼º±Õ°ü´ë)
Çϵð, Ç×ÄÌ, Åä¿¡Çø®Ã÷ ÀÌ·Ð
(Hardy, Hankel and Toeplitz Theory)
Á¦1°. Hardy spaces
Á¦2°. Unilateral shifts
Á¦3°. Toeplitz and Hankel operators
Á¶Á÷À§¿øÈ¸
ÀÌ»ç°è (¼¿ï´ë, ¸í¿¹±³Àå),
°è½ÂÇõ
(¼¿ï´ë), °íÀÀÀÏ (ÀÌÈ¿©´ë)
À̿쿵
(¼¿ï´ë), Á¤ÀϺÀ (°æºÏ´ë), Á¤ÀÚ¾Æ (¼¿ï´ë), ÇãÀ缺 (ÇѾç´ë)
¿¬¶ôó: ¼¿ï´ëÇб³ ¼ö¸®°úÇкÎ
À̿쿵
±³¼ö
(ÀüÈ)
02-880-1435
E-mail:
wylee@math.snu.ac.kr
|