Representations of binary quadratic forms by a sum of squares not divisible by a prime

LIST

모드선택 :              
세미나 신청은 모드에서 세미나실 사용여부를 먼저 확인하세요 

Representations of binary quadratic forms by a sum of squares not divisible by a prime

수리과학부 0 431
구분 학위 논문 심사
일정 2018-11-16(금) 16:00~17:00
세미나실 129동 104호
강연자 임누리 (서울대학교)
담당교수 오병권
기타
We define S(n) the set of quadratic forms of rank n that are represented by a sum of squares. For a quadratic form f in S(n), we say f is a sum of k squares not divisible by p if there are integers a_{ij}'s such that f(x_1, x_2, ..., x_n)=(a_{11}x_1+...+a_{1n}x_n)^2+...+(a_{n1}x_1+...+a_{nn}x_n)^2 and (a_{i1}a_{i2} ... a_{in},p)=1 for any i. We define s_p(n) the smallest integer t such that any f in S(n), f is a sum of at most t squares not divisible by p. In this talk, we consider the binary case, that is, we prove that s_2(2)=11, s_3(2)=7, s_5(2)=6 and 4 < s_p(2) < 8 for any p > 5.

    정원 :
    부속시설 :
세미나명