Cheeger-Gromov L^2 rho-invariant of 3-manifolds

LIST

모드선택 :              
세미나 신청은 모드에서 세미나실 사용여부를 먼저 확인하세요

Cheeger-Gromov L^2 rho-invariant of 3-manifolds

수리과학부 0 1293
구분 기하 위상수학 세미나
일정 2018-12-13(목) 14:00~15:30
세미나실 129동 301호
강연자 Geunho Lim (Indiana University)
담당교수 강정수
기타
I`ll talk about Cheeger-Gromov L^2 rho-invariant of 3-manifolds. Cheeger and Gromov analytically defined L^2 rho-invariant to Riemannian manifolds and showed L^2 rho-invariant has a universal bound by using deep analytic argument. Chang and Weinberger extended the definition to topological manifolds. Cha proved existence of universal bound for L^2 rho-invariant of topological manifolds and found an explicit bound in terms of a complexity of given 3-manifold. To be specific, L^2 rho-invariant of a 3-manifold can be linearly bounded by a number of 2-handles of a 4-manifold which has a boundary of given 3-manifold. We will discuss about the topological definition and proof about Cheeger-Gromov L^2 rho-invariant of 3-manifolds.

    정원 :
    부속시설 :
세미나명