Finite index subgroups of right-angled Artin groups

LIST

모드선택 :              
세미나 신청은 모드에서 세미나실 사용여부를 먼저 확인하세요

Finite index subgroups of right-angled Artin groups

수리과학부 0 274
구분 기타
일정 2016-11-22(화) 16:00~18:00
세미나실 129동 104호
강연자 박효원 (서울대)
담당교수 임선희
기타
Right-angled Artin groups are the graph product whose vertex groups are infinite cyclic groups, which are defined by finite simple graphs. A finite simple graph is called thin-chordal if it has no induced subgraphs that are isomorphic to either the cycle with 4 vertices or the path with 4 vertices. We will discuss group properties related to right-angled Artin groups from thin-chordal graphs. We show that a right-angled Artin group is defined by a thin-chordal graph if and only if every finite index subgroup of the group is a right-angled Artin group.

    정원 :
    부속시설 :
세미나명