global navigaion menu / 글로벌 네비게이션 메뉴


  • Course: Calculus for Business
  • Course Number: 033.009 003
  • Course Goal: The purpose of this course is to study the methods of calculus involve the notions of differentiation and integration of functions of a single variable. Calculus is used in developing the foundations of most areas of economics, science and engineering as well as serving as the basis for further work in mathematics such as in differential equations and analysis. One objective is to develop your understanding of these concepts. Another objective is for you to learn how to use calculus in analyzing problems and building models for economic applications. We will develop computational methods and algorithms for deriving solutions to these problems.
  • Textbook: Knut Sydsaeter, Peter Hammond & Arne Strom; Essential Mathematics for Economic Analysis(5th ed.), PEARSON
  • Reference
    1. James Stewart, Single Variable Calculus(8th ed.), CENGAGE
    2. 강혜정, 『경제, 경영을 위한 수학』, 경문사
  • Exams: There will be two midterm exams, held in the class (or 6:00-7:30pm), and a 2-hour final exam. Note that our exams are not multiple choices.
    Exam Date
    Midterm Exam 1 Tuesday, October 1st
    Midterm Exam 2 Thursday, November 7th
    Final Exam Thursday, December 12th
    • MAKE-UPS: To take a make-up exam, you need to provide with a proper documentation. Students that have a time conflict with other regularly scheduled course may take the make-up exam. However, students with other types of time conflicts (like work, social activities, etc.) should prearrange to take the exam at the scheduled time and date.
  • Homework: A weekly homework assignment will be posted on eTL and for you this is the most important part of the course. Please submit your homework at the report box (on 1st floor, 27-dong) by 17:00 every Friday.
  • Grades: The course grade will be determined by midterms, the final exam, and homework assignments,
    ( 25% for each midterm + 30% for final exam + 20% for homework )
  • Caution
    • If you miss the midterm or the final exam, you will get “F” for the final course grade.
    • “F” grade for any academic dishonesty.
    • “F” grade for absence from the class more than 10 times.
    • No calculators or other handheld electronic devices are allowed on exams.
  • Weekly Schedule (The following is a tentative syllabus)
    Week Topics to be covered Academic Calendar
    1st(9/2-9/6) 6.1 Slopes of curves
    6.2 Tangents and derivatives
    6.5 A dash of limits
    6.3 Increasing and Decreasing Functions
    6.4 Rates of change
    9/2(Mon) Fall semester classes begin
    9/2(Mon)~6(Fri) Course add and drop period
    2nd(9/9-9/13) 6.6 Simple rules for differentiation
    6.7 Sums, products and quotients
    9/12(Thu)~9/14(Sat) Chuseok (national holiday)
    3rd(9/16-9/20) 6.8 The Chain Rule
    6.9 Higher-order derivatives
    6.10 Exponential functions
    6.11 Logarithmic functions
    4th(9/23-9/27) 7.1 Implicit differentiation
    7.3 Differentiating the inverse
    7.4 Linear approximations
    7.5 Polynomial approximations
    9/27(Fri) First quarter of fall semester ends
    5th(9/30-10/4) 7.2 Economic examples*
    Review and Midterm 1
    10/1(Tue) Midterm 1
    10/3(Thu) Foundation Day (national holiday)
    6th(10/7-10/11) 7.7 Why Economists Use Elasticities*
    7.8 Continuity
    7.10 The intermediate value theorem and Newton’s method
    7.12 L'Hôpital's Rule
    7th(10/14-10/18) 8.1 Extreme points
    8.2 Simple tests for extreme points
    10/15(Tue) SNU Anniversary
    8th(10/21-10/25) 8.3 Economic Examples*
    8.4 The Extreme Value Theorem
    8.5 Further Economic Examples*
    8.6 Local extreme points
    10/24(Thu)~25(Fri) Reading period (regular class)
    10/25(Fri) Last day to withdraw from fall semester courses, Second quarter of fall semester ends
    9th(10/28-11/1) 8.7 Inflection points
    9.1 Indefinite integrals
    9.2 Area and definite integrals
    9.3 Properties of definite integrals
    10th(11/4-11/8) 9.4 Economic Examples*
    9.5 Integration by parts
    9.6 Integration by substitution
    Review and Midterm 2
    11/7(Thu) Midterm 2
    11th(11/11-11/15) 9.7 Infinite intervals of integration
    9.8 A glimpse at differential equations
    9.9 Separable and linear differential equations
    12th(11/18-11/22) 15.1 Systems of linear equations
    15.2 Matrices and matrix operations
    15.3 Matrix multiplication
    15.4 Rules for matrix multiplication
    11/20(Wed) Third quarter of fall semester ends
    13th(11/25-11/29) 15.5 The transpose
    15.6 Gaussian elimination
    15.7 Vectors
    15.8 Geometric interpretation of vectors
    14th(12/2-12/6) 15.9 Lines and planes
    16.1 Determinants of order 2
    16.2 Determinants of order 3
    16.3 Determinants of order n
    15th(12/9-12/13) 16.4 Basic Rules for Determinants
    16.5 Expansion by Cofactors
    16.6 The Inverse of a Matrix
    Review and Final Exam
    12/12(Thu) Final Exam
    6/14(Fri) Fall semester ends
    16th(12/16-12/20) Make-up classes

Instructor Information
Section No. Instructor E-mail Address Office Phone No.
Lecture Time Lecture Room Office Hours
003 Ahn, Myungsook mahn1999 (at) 27-417 6557 Tue, Thu 12:30~13:45 25-109 14:00~15:00 or by appointment
TAs Information
Section No. TA E-mail Address Office Phone No.
003 Cho, Hyuntae choant (at) 27-430 1313
BAASANDORJ SUMIYA summa2017 (at) 27-328 1315

List of Articles
번호 제목 글쓴이
공지 2019학년도 과목별 강좌 안내 조교실
61 [2019-여름학기] 수학연습 2 강의계획서 조교실
60 [2019-여름학기] 수학연습 1 강의계획서 조교실
59 [2019-여름학기] 수학 2 강의계획서 조교실
58 [2019-여름학기] 수학 1 강의계획서 조교실
57 [2019-여름학기] 생명과학을 위한 수학 1 002강좌 강의계획서 조교실
56 [2019-여름학기] 생명과학을 위한 수학 1 001강좌 강의계획서 조교실
55 [2019-여름학기] 공학수학 2 강의계획서 조교실
54 [2019-여름학기] 공학수학 1 강의계획서 조교실
53 [2019-겨울학기] 수학연습 2 002강좌 강의계획서 조교실
52 [2019-겨울학기] 수학연습 2 001강좌 강의계획서 조교실
51 [2019-겨울학기] 수학연습 1 002강좌 강의계획서 조교실
50 [2019-겨울학기] 수학연습 1 001강좌 강의계획서 조교실
49 [2019-겨울학기] 수학 2 002강좌 강의계획서 조교실
48 [2019-겨울학기] 수학 2 001강좌 강의계획서 조교실
47 [2019-겨울학기] 수학 1 강의계획서 조교실
46 [2019-2학기] 인문사회계를 위한 수학 2 강의계획서 조교실
45 [2019-2학기] 인문사회계를 위한 수학 1 002~003강좌 강의계획서 조교실
44 [2019-2학기] 인문사회계를 위한 수학 1 001강좌 강의계획서 조교실
43 [2019-2학기] 수학연습 2(국어강좌) 강의계획서 조교실
42 [2019-2학기] 수학연습 1 강의계획서 조교실
41 [2019-2학기] 수학 2(국어강좌) 강의계획서 조교실
40 [2019-2학기] 수학 1 강의계획서 조교실
39 [2019-2학기] 생명과학을 위한 수학 2 강의계획서 조교실
38 [2019-2학기] 생명과학을 위한 수학 1 002강좌 강의계획서 조교실
37 [2019-2학기] 생명과학을 위한 수학 1 001강좌 강의계획서 조교실
36 [2019-2학기] 미적분학연습 2 강의계획서 조교실
35 [2019-2학기] 미적분학 2 강의계획서 조교실
34 [2019-2학기] 기초수학 2(Basic Calculus 2) 강의계획서 조교실
33 [2019-2학기] 공학수학 2 강의계획서 조교실
32 [2019-2학기] 공학수학 1 강의계획서 조교실
31 [2019-2학기] 고급수학연습 2 001~006강좌 강의계획서 조교실
30 [2019-2학기] 고급수학 2 001~003강좌 강의계획서 조교실
29 [2019-2학기] 경영학을 위한 수학 001강좌 강의계획서 조교실
28 [2019-2학기] Honor Calculus Practice 2 section #007~#008(English) Syllabus 조교실
27 [2019-2학기] Honor Calculus 2 section #004(English) Syllabus 조교실
26 [2019-2학기] Elementary Calculus(미적분학의 첫걸음) Syllabus file 조교실
25 [2019-2학기] Calculus Practice 2 section #052~#053(English) Syllabus 조교실
» [2019-2학기] Calculus for Business section(경영학을 위한 수학) #003(English) Syllabus 조교실
23 [2019-2학기] Calculus 2 section #028(English) Syllabus 조교실
22 [2019-1학기] 인문사회계를 위한 수학 1 강의계획서 조교실
21 [2019-1학기] 수학의 기초와 응용 1 강의계획서 조교실
20 [2019-1학기] 수학연습 2 강의계획서 조교실
19 [2019-1학기] 수학연습 1(국어강좌) 강의계획서 조교실
18 [2019-1학기] 수학 2 강의계획서 조교실
17 [2019-1학기] 수학 1(국어강좌) 강의계획서 조교실
16 [2019-1학기] 생명과학을 위한 수학 2 강의계획서 조교실
15 [2019-1학기] 생명과학을 위한 수학 1 강의계획서 조교실
14 [2019-1학기] 미적분학의 첫걸음 001~002강좌 강의계획서 조교실
13 [2019-1학기] 미적분학연습 1 강의계획서 조교실
12 [2019-1학기] 미적분학 1 강의계획서 조교실
11 [2019-1학기] 기초수학 1(Basic Calculus 1) 강의계획서 조교실
10 [2019-1학기] 공학수학 2 강의계획서 조교실
9 [2019-1학기] 공학수학 1 강의계획서 조교실
8 [2019-1학기] 고급수학연습 1 001~004강좌 강의계획서 조교실
7 [2019-1학기] 고급수학 1 001~002강좌 강의계획서 조교실
6 [2019-1학기] 경영학을 위한 수학 강의계획서 조교실
5 [2019-1학기] Elementary Calculus section #003(English) Syllabus file 조교실
4 [2019-1학기] Calculus Practice 1 section #057~#058(English) Syllabus 조교실
3 [2019-1학기] Calculus 1 section #029(English) Syllabus 조교실
2 [2019-1학기] Honor Calculus Practice 1 section #005~#006(English) Syllabus 조교실
1 [2019-1학기] Honor Calculus 1 section 003(English) Syllabus 조교실



로그인 유지